1,891
Views
12
CrossRef citations to date
0
Altmetric
Articles

Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals

, , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 924-936 | Received 05 Jun 2019, Accepted 04 Jul 2019, Published online: 26 Jul 2019

References

  • Albright, V. C., 3rd, Hellmich, R. L., & Coats, J. R. (2016). A review of cry protein detection with enzyme-linked immunosorbent assays. Journal of Agricultural and Food Chemistry, 64, 2175–2189. doi: 10.1021/acs.jafc.5b03766
  • Andreassen, M., Rocca, E., Bohn, T., Wikmark, O. G., van den Berg, J., Lovik, M., & Nygaard, U. C. (2015). Humoral and cellular immune responses in mice after airway administration of Bacillus thuringiensis Cry1Ab and MON810 cry1Ab-transgenic maize. Food and Agricultural Immunology, 26, 521–537. doi: 10.1080/09540105.2014.988128
  • Cheung, P. Y. K., & Hammock, B. D. (1988). Monitoring Bacillus thuringiensis in the environment with enzyme-linked immunosorbant assay. In P. A. Hedin, J. J. Menn, & R. M. Hollingworth (Eds.), Biotechnology for Crop Protection (pp. 359–372). Washington, DC: American Chemical Society.
  • Clark, B. W., Phillips, T. A., & Coats, J. R. (2005). Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: A review. Journal of Agricultural and Food Chemistry, 53, 4643–4653. doi: 10.1021/jf040442k
  • De Genst, E., Silence, K., Decanniere, K., Conrath, K., Loris, R., Kinne, J., … Wyns, L. (2006). Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proceedings of the National Academy of Sciences, 103, 4586–4591. doi: 10.1073/pnas.0505379103
  • Demeke, T., & Dobnik, D. (2018). Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Analytical and Bioanalytical Chemistry, 410, 4039–4050. doi: 10.1007/s00216-018-1010-1
  • Dong, S., Bo, Z. Y., Zhang, C. Z., Feng, J. G., & Liu, X. J. (2018). Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library. Applied Microbiology and Biotechnology, 102, 3363–3374. doi: 10.1007/s00253-018-8797-8
  • Dong, S., Zhang, X., Liu, Y., Zhang, C., Xie, Y., Zhong, J., … Liu, X. (2017). Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Analytical and Bioanalytical Chemistry, 409, 1985–1994. doi: 10.1007/s00216-016-0146-0
  • Dong, S., Zhang, C., Zhang, X., Liu, Y., Zhong, J., Xie, Y., … Liu, X. (2016). Production and characterization of monoclonal antibody broadly recognizing Cry1 toxins by use of designed polypeptide as hapten. Analytical Chemistry, 88, 7023–7032. doi: 10.1021/acs.analchem.6b00429
  • Fraiture, M. A., Herman, P., Taverniers, I., De Loose, M., Deforce, D., & Roosens, N. H. (2015). Current and new approaches in GMO detection: Challenges and solutions. Biomed Research International, 2015, 1–22. doi:10.1155/2015/392872.
  • Gao, H., Wen, L., Wu, Y., Fu, Z., & Wu, G. (2017). An ultrasensitive label-free electrochemiluminescent immunosensor for measuring Cry1Ab level and genetically modified crops content. Biosensors and Bioelectronics, 97, 122–127. doi: 10.1016/j.bios.2017.04.033
  • Gassmann, A. J., Petzold-Maxwell, J. L., Clifton, E. H., Dunbar, M. W., Hoffmann, A. M., Ingber, D. A., & Keweshan, R. S. (2014). Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proceedings of the National Academy of Sciences, 111, 5141–5146. doi: 10.1073/pnas.1317179111
  • Goldman, E. R., Anderson, G. P., Bernstein, R. D., & Swain, M. D. (2010). Amplification of immunoassay using phage-displayed single domain antibodies. Journal of Immunological Methods, 352, 182–185. doi: 10.1016/j.jim.2009.10.014
  • Goldman, E. R., Liu, J. L., Bernstein, R. D., Swain, M. D., Mitchell, S. Q., & Anderson, G. P. (2009). Ricin detection using phage displayed single domain antibodies. Sensors, 9, 542–555. doi: 10.3390/s90100542
  • Guertler, P., Paul, V., Albrecht, C., & Meyer, H. H. (2009). Sensitive and highly specific quantitative real-time PCR and ELISA for recording a potential transfer of novel DNA and Cry1Ab protein from feed into bovine milk. Analytical and Bioanalytical Chemistry, 393, 1629–1638. doi: 10.1007/s00216-009-2667-2
  • Guimaraes, V. D., Drumare, M. F., Ah-Leung, S., Lereclus, D., Bernard, H., Creminon, C., … Adel-Patient, K. (2008). Comparative study of the adjuvanticity of Bacillus thuringiensis Cry1Ab protein and cholera toxin on allergic sensitisation and elicitation to peanut. Food and Agricultural Immunology, 19, 325–337. doi: 10.1080/09540100802495651
  • Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., … Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363, 446–448. doi: 10.1038/363446a0
  • Haslberger, A. G. (2000). Genetic Technologies: Monitoring and Labeling for genetically modified products. Science, 287, 431–432. doi: 10.1126/science.287.5452.431
  • ISAAA. (2017). Global status of commercialized Biotech/GM crops: 2017. ISAAA. http://isaaa.org/resources/publications/briefs/53/default.asp.
  • Kamle, S., Kumar, A., & Bhatnagar, R. K. (2011). Development of multiplex and construct specific PCR assay for detection of cry2Ab transgene in genetically modified crops and product. GM Crops, 2, 74–81. doi: 10.4161/gmcr.2.1.16017
  • Kamle, S., Ojha, A., & Kumar, A. (2011). Development of an enzyme linked immunosorbant assay for the detection of Cry2Ab protein in transgenic plants. GM Crops, 2, 118–125. doi: 10.4161/gmcr.2.2.16191
  • Kim, H. J., McCoy, M. R., Majkova, Z., Dechant, J. E., Gee, S. J., Tabares-da Rosa, S., … Hammock, B. D. (2012). Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Analytical Chemistry, 84, 1165–1171. doi: 10.1021/ac2030255
  • Li, F., Yan, W., Long, L., Qi, X., Li, C., & Zhang, S. (2014). Development and application of loop-mediated isothermal amplification assays for rapid visual detection of cry2Ab and cry3A genes in genetically-modified crops. International Journal of Molecular Sciences, 15, 15109–15121. doi: 10.3390/ijms150915109
  • Li, M., Zhu, M., Zhang, C. Z., Liu, X. J., & Wan, Y. K. (2014). Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins, 6, 3208–3222. doi: 10.3390/toxins6123208
  • Lipton, C. R., Dautlick, J. X., Grothaus, G. D., Hunst, P. L., Magin, K. M., Mihaliak, C. A., … Stave, J. W. (2010). Guidelines for the validation and use of immunoassays for determination of introduced proteins in biotechnology enhanced crops and derived food ingredients. Food and Agricultural Immunology, 12, 153–164. doi: 10.1080/095401000404094
  • Lu, K. Y., Gu, Y. Q., Liu, X. P., Lin, Y., & Yu, X. Q. (2017). Possible insecticidal mechanisms mediated by immune-response-related Cry-binding proteins in the midgut juice of Plutella xylostella and Spodoptera exigua. Journal of Agricultural and Food Chemistry, 65, 2048–2055. doi: 10.1021/acs.jafc.6b05769
  • Peltomaa, R., Lopez-Perolio, I., Benito-Pena, E., Barderas, R., & Moreno-Bondi, M. C. (2016). Application of bacteriophages in sensor development. Analytical and Bioanalytical Chemistry, 408, 1805–1828. doi: 10.1007/s00216-015-9087-2
  • Qiu, Y. L., Li, P., Dong, S., Zhang, X. S., Yang, Q. R., Wang, Y. L., … Liu, X. J. (2018). Phage-mediated competitive chemiluminescent immunoassay for detecting Cry1Ab toxin by using an anti-idiotypic camel nanobody. Journal of Agricultural and Food Chemistry, 66, 950–956. doi: 10.1021/acs.jafc.7b04923
  • Razavi, A., Malhotra, I., Ghosh, A., Pusztai-Carey, M., Marks, J., & King, C. (2017). Antibodies as epidemiological markers of genetically modified crop exposure: Detection of Cry1Ab-specific IgG. Food and Agricultural Immunology, 28, 779–788. doi: 10.1080/09540105.2017.1313200
  • Shu, M., Xu, Y., Dong, J., Zhong, C., Hammock, B. D., Wang, W., & Wu, G. (2019). Development of a noncompetitive idiometric nanobodies phage immumoassay for the determination of fumonisin B1. Food and Agricultural Immunology, 30, 510–521. doi: 10.1080/09540105.2019.1604637
  • Soberon, M., Gill, S. S., & Bravo, A. (2009). Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 66, 1337–1349. doi: 10.1007/s00018-008-8330-9
  • Szekacs, A., Weiss, G., Quist, D., Takacs, E., Darvas, B., Meier, M., … Hilbeck, A. (2012). Inter-laboratory comparison of Cry1Ab toxin quantification in MON 810 maize by enzyme-immunoassay. Food and Agricultural Immunology, 23, 99–121. doi: 10.1080/09540105.2011.604773
  • Tu, Z., Xu, Y., He, Q., Fu, J., Liu, X., & Tao, Y. (2012). Isolation and characterisation of deoxynivalenol affinity binders from a phage display library based on single-domain camelid heavy chain antibodies (VHHs). Food and Agricultural Immunology, 23, 123–131. doi: 10.1080/09540105.2011.606560
  • Walschus, U. W. E., Witt, S., & Wittmann, C. (2002). Development of monoclonal antibodies against Cry1Ab protein from Bacillus thuringiensis and their application in an ELISA for detection of transgenic Bt-maize. Food and Agricultural Immunology, 14, 231–240. doi: 10.1080/0954010021000096382a
  • Wie, S. I., Andrews, R. E., Jr., Hammock, B. D., Faust, R. M., & Bulla, L. A., Jr. (1982). Enzyme-linked immunosorbent assays for detection and quantitation of the entomocidal parasporal crystalline protein of Bacillus thuringiensis subspp. Kurstaki and israelensis. Applied and Environmental Microbiology, 43, 891–894.
  • Xu, L., Pan, Z. Z., Zhang, J., Liu, B., Zhu, Y. J., & Chen, Q. X. (2016). Proteolytic activation of Bacillus thuringiensis Cry2Ab through a belt-and-braces approach. Journal of Agricultural and Food Chemistry, 64, 7195–7200. doi: 10.1021/acs.jafc.6b03111
  • Xu, C. X., Zhang, X., Liu, X. Q., Liu, Y., Hu, X. D., Zhong, J. F., … Liu, X. J. (2016). Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins. Analytical Biochemistry, 512, 70–77. doi: 10.1016/j.ab.2016.08.012
  • Xu, C., Zhang, C., Zhong, J., Hu, H., Luo, S., Liu, X., … Liu, X. (2017). Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies. Journal of Agricultural and Food Chemistry, 65, 6016–6022. doi: 10.1021/acs.jafc.7b01985
  • Zhang, X., Xu, C. X., Zhang, C. Z., Liu, Y., Xie, Y. J., & Liu, X. J. (2014). Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naive mouse phage displayed library. Toxicon, 81, 13–22. doi: 10.1016/j.toxicon.2014.01.010
  • Zhang, Y. W., Zhang, W., Liu, Y., Wang, J. H., Wang, G. Y., & Liu, Y. J. (2016). Development of monoclonal antibody-based sensitive ELISA for the determination of Cry1Ie protein in transgenic plant. Analytical and Bioanalytical Chemistry, 408, 8231–8239. doi: 10.1007/s00216-016-9938-5
  • Zhu, X. L., Chen, L. L., Shen, P., Jia, J. W., Zhang, D. B., & Yang, L. T. (2011). High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. Journal of Agricultural and Food Chemistry, 59, 2184–2218. doi: 10.1021/jf104140t
  • Zhu, M., Li, M., Li, G. H., Zhou, Z. K., Liu, H., Lei, H. T., … Wan, Y. K. (2015). Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Microchimica Acta, 182, 2451–2459. doi: 10.1007/s00604-015-1602-9