16,106
Views
79
CrossRef citations to date
0
Altmetric
Articles

Current advances in immunoassays for the detection of antibiotics residues: a review

, , , , , , , , & show all
Pages 268-290 | Received 03 Nov 2019, Accepted 16 Dec 2019, Published online: 10 Feb 2020

References

  • Agarwal, V. K. (1992). Analysis of antibiotic/drug residues in food products of animal origin. New York, London: Springer.
  • Ahmed, S., Ning, J., Cheng, G., Ahmad, I., Li, J., Mingyue, L., … Yuan, Z. (2017). Receptor-based screening assays for the detection of antibiotics residues – a review. Talanta, 166, 176–186.
  • Ahmed, S., Ning, J., Cheng, G., Maan, M. K., Chen, T., Ahmad, I., … Yuan, Z. (2020). Development and validation of an enzyme-linked receptor assay based on mutant protein I188 K/S19C/G24C for 40 beta-lactams antibiotics detection in 13 food samples. Microchemical Journal, 152, 104354.
  • Aksoy, A. (2019). Simultaneous screening of antibiotic residues in honey by biochip multi-array technology. Medycyna Weterynaryjna-Veterinary Medicine-Science And Practice, 75(9), 567–571.
  • Al-Mazeedi, H. M., Abbas, A. B., Alomirah, H. F., Al-Jouhar, W. Y., Al-Mufty, S. A., Ezzelregal, M. M., & Al-Owaish, R. A. (2010). Screening for tetracycline residues in food products of animal origin in the State of Kuwait using Charm II radio-immunoassay and LC/MS/MS methods. Food Additives and Contaminants: Part A, 27(3), 291–301.
  • Barinova, K., Khomyakova, E., Kuravsky, M., Schmalhausen, E., & Muronetz, V. (2017). Denaturing action of adjuvant affects specificity of polyclonal antibodies. Biochemical and Biophysical Research Communications, 482(4), 1265–1270.
  • Beloglazova, N., Shmelin, P., & Eremin, S. (2016). Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicin in milk. Talanta, 149, 217–224.
  • Benito-Peña, E., Moreno-Bondi, M. C., Orellana, G., Maquieira, Á, & van Amerongen, A. (2005). Development of a novel and automated fluorescent immunoassay for the analysis of β-lactam antibiotics. Journal of Agricultural and Food Chemistry, 53(17), 6635–6642.
  • Berlina, A. N., Taranova, N. A., Zherdev, A. V., Vengerov, Y. Y., & Dzantiev, B. B. (2013). Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Analytical and Bioanalytical Chemistry, 405(14), 4997–5000.
  • Broto, M., Matas, S., Babington, R., Marco, M.-P., & Galve, R. (2015). Immunochemical detection of penicillins by using biohybrid magnetic particles. Food Control, 51, 381–389.
  • Byzova, N. A., Smirnova, N. I., Zherdev, A. V., Eremin, S. A., Shanin, I. A., Lei, H.-T., … Dzantiev, B. B. (2014). Rapid immunochromatographic assay for ofloxacin in animal original foodstuffs using native antisera labeled by colloidal gold. Talanta, 119, 125–132.
  • Cao, B., He, G., Yang, H., Chang, H., Li, S., & Deng, A. (2013). Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC–MS/MS). Talanta, 115, 624–630.
  • Cao, B., Yang, H., Song, J., Chang, H., Li, S., & Deng, A. (2013). Sensitivity and specificity enhanced enzyme-linked immunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigen combinations for the detection of melamine in milk, milk powder and feed samples. Talanta, 116, 173–180.
  • Cháfer-Pericás, C., Maquieira, Á, Puchades, R., Miralles, J., & Moreno, A. (2011). Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Control, 22(6), 993–999.
  • Chen, J., Shanin, I. A., Lv, S., Wang, Q., Mao, C., Xu, Z., … Lei, H. (2016). Heterologous strategy enhancing the sensitivity of the fluorescence polarization immunoassay of clinafloxacin in goat milk. Journal of the Science of Food and Agriculture, 96(4), 1341–1346.
  • Chen, M., Wen, K., Tao, X., Ding, S., Xie, J., Yu, X., … Xie, S. (2014). A novel multiplexed fluorescence polarisation immunoassay based on a recombinant bi-specific single-chain diabody for simultaneous detection of fluoroquinolones and sulfonamides in milk. Food Additives & Contaminants: Part A, 31(12), 1959–1967.
  • Chen, W., Jie, W., Chen, Z., Jie, X., & Huang-Xian, J. (2012). Chemiluminescent immunoassay and its applications. Chinese Journal of Analytical Chemistry, 40(1), 3–10.
  • Chen, X., Hong, F., Cao, Y., Hu, F., Wu, Y., Wu, D., … Gan, N. (2018). A microchip electrophoresis-based assay for ratiometric detection of kanamycin by R-shape probe and exonuclease-assisted signal amplification. Talanta, 189, 494–501.
  • Chen, Y., Chen, Q., Han, M., Liu, J., Zhao, P., He, L., … Zhang, L. (2016). Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosensors and Bioelectronics, 79, 430–434.
  • Chen, Y., Wang, Y., Liu, L., Wu, X., Xu, L., Kuang, H., … Xu, C. (2015). A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams. Nanoscale, 7(39), 16381–16388.
  • Chuanlai, X., Cifang, P., Kai, H., Zhengyu, J., & Wukang, W. (2006). Chemiluminescence enzyme immunoassay (CLEIA) for the determination of chloramphenicol residues in aquatic tissues. Luminescence, 21(2), 126–128.
  • Conti, G. O., Copat, C., Wang, Z., D'Agati, P., Cristaldi, A., & Ferrante, M. (2015). Determination of illegal antimicrobials in aquaculture feed and fish: An ELISA study. Food Control, 50, 937–941.
  • Conzuelo, F., Campuzano, S., Gamella, M., Pinacho, D. G., Reviejo, A. J., Marco, M. P., & Pingarrón, J. M. (2013). Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosensors and Bioelectronics, 50, 100–105.
  • Crivianu-Gaita, V., & Thompson, M. (2016). Aptamers, antibody scFv, and antibody Fab'fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosensors and Bioelectronics, 85, 32–45.
  • Cullor, J. (1993). Antibiotic residue tests for mammary gland secretions. Veterinary Clinics of North America: Food Animal Practice, 9(3), 609–620.
  • Cullor, J., Van Eenennaam, A., Dellinger, J., Perani, L., Smith, W., & Jensen, L. (1992). Antibiotic residue assays: Can they be used to test milk from individual cows? Veterinary Medicine (USA), 87(5), 477–494.
  • Dodeigne, C., Thunus, L., & Lejeune, R. (2000). Chemiluminescence as diagnostic tool. A review. Talanta, 51(3), 415–439.
  • Du, X., Zhang, F., Zhang, H., Wen, Y., & Saren, T. (2014). Substitution of antibody with molecularly imprinted 96-well plate in chemiluminescence enzyme immunoassay for the determination of chloramphenicol residues. Food and Agricultural Immunology, 25(3), 411–422.
  • Fan, G.-y., Yang, R.-s., Jiang, J.-q., Chang, X.-y., Chen, J.-j., Qi, Y.-h., … Yang, X.-f. (2012). Development of a class-specific polyclonal antibody-based indirect competitive ELISA for detecting fluoroquinolone residues in milk. Journal of Zhejiang University Science B, 13(7), 545–554.
  • Franek, M., Kolar, V., Deng, A., & Crooks, S. (1999). Determination of sulphadimidine (sulfamethazine) residues in milk, plasma, urine and edible tissues by sensitive ELISA. Food and Agricultural Immunology, 11(4), 339–349.
  • Galarini, R., Diana, F., Moretti, S., Puppini, B., Saluti, G., & Persic, L. (2014). Development and validation of a new qualitative eLISA screening for multiresidue detection of sulfonamides in food and feed. Food Control, 35(1), 300–310.
  • Gao, F., Zhao, G. X., Zhang, H. C., Wang, P., & Wang, J. P. (2013). Production of monoclonal antibody against doxycycline for immunoassay of seven tetracyclines in bovine muscle and milk. Journal of Environmental Science and Health, Part B, 48(2), 92–100.
  • García-Fernández, J., Trapiella-Alfonso, L., Costa-Fernández, J. M., Pereiro, R., & Sanz-Medel, A. (2014). A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle. Journal of Agricultural and Food Chemistry, 62(7), 1733–1740.
  • Ha, M.-S., Chung, M.-S., & Bae, D.-H. (2016). Simple detection of residual enrofloxacin in meat products using microparticles and biochips. Food Additives & Contaminants: Part A, 33(5), 817–823.
  • Han, S., Zhou, T., Yin, B., & He, P. (2016). A sensitive and semi-quantitative method for determination of multi-drug residues in animal body fluids using multiplex dipstick immunoassay. Analytica Chimica Acta, 927, 64–71.
  • He, X., Duan, C. F., Qi, Y. H., Dong, J., Wang, G. N., Zhao, G. X., … Liu, J. (2017). Virtual mutation and directional evolution of anti-amoxicillin scFv antibody for immunoassay of penicillins in milk. Analytical Biochemistry, 517, 9–17.
  • He, J., Wu, N., Luo, P., Guo, P., Qu, J., Zhang, S., … Wang, C. (2017). Development of a heterologous enzyme-linked immunosorbent assay for the detection of clindamycin and lincomycin residues in edible animal tissues. Meat Science, 125, 137–142.
  • Hu, G., Sheng, W., Zhang, Y., Wu, X., & Wang, S. (2015). A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels. Analytical and Bioanalytical Chemistry, 407(28), 8487–8496.
  • Huang, Z. (2014). Development of an indirect competitive eLISA for detection of danofloxacin residue in milk. International Food Research Journal, 21(4), 1419–1424.
  • Jeon, M., & Paeng, I. R. (2008). Quantitative detection of tetracycline residues in honey by a simple sensitive immunoassay. analytica Chimica Acta, 626(2), 180–185.
  • Jiang, W., Beier, R. C., Luo, P., Zhai, P., Wu, N., Lin, G., … Xu, G. (2015). Analysis of pirlimycin residues in beef muscle, milk, and honey by a biotin–streptavidin-amplified enzyme-linked immunosorbent assay. Journal of Agricultural and Food Chemistry, 64(1), 364–370.
  • Jiang, W., Luo, P., Wang, X., Chen, X., Zhao, Y., Shi, W., … Shen, J. (2012). Development of an enzyme-linked immunosorbent assay for the detection of nitrofurantoin metabolite, 1-amino-hydantoin, in animal tissues. Food Control, 23(1), 20–25.
  • Jiang, W., Wang, Z., Beier, R. C., Jiang, H., Wu, Y., & Shen, J. (2013). Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay. Analytical Chemistry, 85(4), 1995–1999.
  • Jin-Bo, D., Zhen-Lin, X., Feng-Yin, L., Jin-Yi, Y., Yuan-Ming, S., Hong, W., … Yu-Dong, S. (2015). Determination of furaltadone metabolite in fish by chemiluminescence enzyme immunoassay. Chinese Journal of Analytical Chemistry, 43(6), 871–875.
  • Jo, M. R., Son, K. T., Kwon, J. Y., Mok, J. S., Park, H. J., Kim, H. Y., … Lee, T. S. (2015). A lateral flow immunoassay kit for detecting residues of four groups of antibiotics in farmed fish. Korean Journal of Fisheries and Aquatic Sciences, 48(2), 158–167.
  • Jornet, D., González-Martínez, M. A., Puchades, R., & Maquieira, A. (2010). Antibiotic immunosensing: Determination of sulfathiazole in water and honey. Talanta, 81(4-5), 1585–1592.
  • Khoshbin, Z., Verdian, A., Housaindokht, M. R., Izadyar, M., & Rouhbakhsh, Z. (2018). Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosensors and Bioelectronics, 122, 263–283.
  • Kim, S., & Lim, H. (2015). Chemiluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A. Talanta, 140, 183–188.
  • Le, T., Yi, S.-H., Zhao, Z.-W., & Wei, W. (2011). Rapid and sensitive enzyme-linked immunosorbent assay and immunochromatographic assay for the detection of chlortetracycline residues in edible animal tissues. Food Additives & Contaminants: Part A, 28(11), 1516–1523.
  • Le, T., Yu, H., Zhao, Z., & Wei, W. (2012). Development of a monoclonal antibody-based eLISA for the detection of oxytetracycline and 4-epi-oxytetracycline residues in chicken tissues. Analytical Letters, 45(4), 386–394.
  • Li, C., Zhang, Y., Eremin, S. A., Yakup, O., Yao, G., & Zhang, X. (2017). Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-eLISA and fPIA. Food Chemistry, 227, 48–54.
  • Li, X., Shen, J., Wang, Q., Gao, S., Pei, X., Jiang, H., & Wen, K. (2015). Multi-residue fluorescent microspheres immunochromatographic assay for simultaneous determination of macrolides in raw milk. Analytical and Bioanalytical Chemistry, 407(30), 9125–9133.
  • Li, X., Wen, K., Chen, Y., Wu, X., Pei, X., Wang, Q., … Shen, J. (2015). Multiplex immunogold chromatographic assay for simultaneous determination of macrolide antibiotics in raw milk. Food Analytical Methods, 8(9), 2368–2375.
  • Li, Y.-F., Sun, Y.-M., Beier, R. C., Lei, H.-T., Gee, S., Hammock, B. D., … Shen, Y.-D. (2016). Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. TrAC Trends in Analytical Chemistry, 88, 25–40.
  • Liu, N., Song, S., Lu, L., Nie, D., Han, Z., Yang, X., … Zheng, X. (2014). A rabbit monoclonal antibody-based sensitive competitive indirect enzyme-linked immunoassay for rapid detection of chloramphenicol residue. Food and Agricultural Immunology, 25(4), 523–534.
  • Losoya-Leal, A., Estevez, M.-C., Martínez-Chapa, S. O., & Lechuga, L. M. (2015). Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin. Talanta, 141, 253–258.
  • Luo, Y., Xu, J., Li, Y., Gao, H., Guo, J., Shen, F., & Sun, C. (2015). A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control, 54, 7–15.
  • Luo, P. J., Zhang, J. B., Wang, H. L., Chen, X., Y, N. W. U., Zhao, F., … Zhu, L. (2016). Rapid and sensitive chemiluminescent enzyme immunoassay for the determination of neomycin residues in milk. Biomedical and Environmental Sciences, 29(5), 374–378.
  • Mala, J., Puthong, S., Maekawa, H., Kaneko, Y., Palaga, T., Komolpis, K., & Sooksai, S. (2017). Construction and sequencing analysis of scFv antibody fragment derived from monoclonal antibody against norfloxacin (Nor155). Journal of Genetic Engineering and Biotechnology, 15(1), 69–76.
  • Meyer, M., Bumgarner, J., Varns, J. L., Daughtridge, J., Thurman, E., & Hostetler, K. A. (2000). Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry. Science of the Total Environment, 248(2), 181–187.
  • Meyer, V. K., Meloni, D., Olivo, F., Märtlbauer, E., Dietrich, R., Niessner, R., & Seidel, M. (2017). Validation procedure for multiplex antibiotic immunoassays using flow-based chemiluminescence microarrays. In Small molecule microarrays (Vol. 1518, pp. 195–212). Munich, Germany: Springer.
  • Mi, T., Wang, Z., Eremin, S. A., Shen, J., & Zhang, S. (2013). Simultaneous determination of multiple (fluoro) quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. Journal of Agricultural and Food Chemistry, 61(39), 9347–9355.
  • Mitchell, J., Griffiths, M., McEwen, S., McNab, W., & Yee, A. (1998). Antimicrobial drug residues in milk and meat: Causes, concerns, prevalence, regulations, tests, and test performance. Journal of Food Protection, 61(6), 742–756.
  • NaVrátiloVá, P. (2008). Screening methods used for the detection of veterinary drug residues in raw cow milk–a review. Czech Journal of Food Sciences, 26(6), 393–401.
  • Ning, J., Ahmed, S., Cheng, G., Chen, T., Wang, Y., Peng, D., & Yuan, Z. (2019). Analysis of the stability and affinity of blaR-CTD protein to β-lactam antibiotics based on docking and mutagenesis studies. Journal of Biological Engineering, 13(1), 27.
  • O’Farrell, B. (2009). Evolution in lateral flow–based immunoassay systems. In Lateral flow immunoassay (pp. 1–33). Carlsbad: Springer.
  • O’Mahony, J., Moloney, M., McConnell, R. I., Benchikh, E. O., Lowry, P., Furey, A., & Danaher, M. (2011). Simultaneous detection of four nitrofuran metabolites in honey using a multiplexing biochip screening assay. Biosensors and Bioelectronics, 26(10), 4076–4081.
  • Oruc, H. H., Rumbeiha, W. K., Ensley, S., Olsen, C., & Schrunk, D. E. (2013). Simultaneous detection of Six different groups of antimicrobial drugs in porcine oral fluids using a biochip array-based immunoassay. Kafkas Universitesi Veteriner Fakultesi Dergisi, 19(3), 407–412.
  • Pastor-Navarro, N., Morais, S., Maquieira, A., & Puchades, R. (2007). Synthesis of haptens and development of a sensitive immunoassay for tetracycline residues: application to honey samples. Analytica Chimica Acta, 594(2), 211–218.
  • Peng, J., Cheng, G., Huang, L., Wang, Y., Hao, H., Peng, D., … Yuan, Z. (2013). Development of a direct eLISA based on carboxy-terminal of penicillin-binding protein blaR for the detection of β-lactam antibiotics in foods. Analytical and Bioanalytical Chemistry, 405(27), 8925–8933.
  • Pennacchio, A., Varriale, A., Esposito, M. G., Scala, A., Marzullo, V. M., Staiano, M., & D’Auria, S. (2015). A rapid and sensitive assay for the detection of benzylpenicillin (penG) in milk. PloS One, 10(7), e0132396.
  • Popa, I. D., Schiriac, E. C., & Cuciureanu, R. (2012). Multi-analytic detection of antibiotic residues in honey using a multiplexing biochip assay. Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi, 116(1), 324–329.
  • Posthuma-Trumpie, G. A., Korf, J., & van Amerongen, A. (2009). Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, 393(2), 569–582.
  • Renson, C., Degand, G., Maghuin-Rogister, G., & Delahaut, P. (1993). Determination of sulphamethazine in animal tissues by enzyme immunoassay. Analytica Chimica Acta, 275(1), 323–328.
  • Sánchez-Martínez, M., Aguilar-Caballos, M., & Gómez-Hens, A. (2009). Long-wavelength homogeneous enzyme immunoassay for the determination of amikacin in water samples. Talanta, 78(1), 305–309.
  • Shanin, I., Shaimardanov, A., Thai, N. T. D., & Eremin, S. (2015). Determination of fluoroquinolone antibiotic levofloxacin in urine by fluorescence polarization immunoassay. Journal of Analytical Chemistry, 70(6), 712–717.
  • Smith, D. S., & Eremin, S. A. (2008). Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Analytical and Bioanalytical Chemistry, 391(5), 1499–1507.
  • Song, E., Yu, M., Wang, Y., Hu, W., Cheng, D., Swihart, M. T., & Song, Y. (2015). Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. Biosensors and Bioelectronics, 72, 320–325.
  • Spinks, C., Schut, C., Wyatt, G., Spinks, C., & Morgan, C. (2001). Development of an eLISA for sulfachlorpyridazine and investigation of matrix effects from different sample extraction procedures. Food Additives & Contaminants, 18(1), 11–18.
  • Squadrone, S., Marchis, D., Loria, A., Amato, G., Ferro, G. L., & Abete, M. C. (2015). Detection of banned antibacterial growth promoter in animal feed by enzyme-linked immunosorbent assay: method validation according to the commission decision 2002/657/EC criteria. Food Control, 47, 66–70.
  • Tao, X., Jiang, H., Zhu, J., Niu, L., Wu, X., Shi, W., … Shen, J. (2012). Detection of ultratrace chloramphenicol residues in milk and chicken muscle samples using a chemiluminescent eLISA. Analytical Letters, 45(10), 1254–1263.
  • Tao, X., Shen, J., Cao, X., Wang, Z., Wu, X., & Jiang, H. (2014). Simultaneous determination of chloramphenicol and clenbuterol in milk with hybrid chemiluminescence immunoassays. Analytical Methods, 6(4), 1021–1027.
  • Thakur, G., Vishweswaraiah, R. H., Tehri, N., Kumar, N., Yadav, A., & Malik, R. K. (2014). Biochip based detection-An emerging tool for ensuring safe milk: A review. Journal of Innovative Biology, 1(3), 147–154.
  • Tufa, R. A., Pinacho, D. G., Pascual, N., Granados, M., Companyó, R., & Marco, M. P. (2015). Development and validation of an enzyme linked immunosorbent assay for fluoroquinolones in animal feeds. Food Control, 57, 195–201.
  • Van Herwijnen, R., & Baumgartner, S. (2006). The use of lateral flow devices to detect food allergens. In Koppelman stef j & Hefle Sue L (Eds.), Detecting Allergens in food (pp. 175–181). Cambridge: Woodhead Publishing.
  • Wang, Z., Beier, R. C., & Shen, J. (2017). Immunoassays for detection of macrocyclic lactones in food matrices—A review. TrAC Trends in Analytical Chemistry, 92, 42–61.
  • Wang, Y., Gan, N., Zhou, Y., Li, T., Hu, F., Cao, Y., & Chen, Y. (2017). Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosensors and Bioelectronics, 97, 100–106.
  • Wang, C., Li, X., Peng, T., Wang, Z., Wen, K., & Jiang, H. (2017). Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control, 77, 1–7.
  • Wang, W., Liu, L., Xu, L., Ma, W., Kuang, H., & Xu, C. (2013). Detection of β-lactamase residues in milk by sandwich eLISA. International Journal of Environmental Research and Public Health, 10(7), 2688–2698.
  • Wang, S., Liu, J., Yong, W., Chen, Q., Zhang, L., Dong, Y., … Tan, T. (2015). A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey. Talanta, 131, 562–569.
  • Wang, Z., Mi, T., Beier, R. C., Zhang, H., Sheng, Y., Shi, W., … Shen, J. (2015). Hapten synthesis, monoclonal antibody production and development of a competitive indirect enzyme-linked immunosorbent assay for erythromycin in milk. Food Chemistry, 171, 98–107.
  • Wang, S., Xu, B., Zhang, Y., & He, J. (2009). Development of enzyme-linked immunosorbent assay (eLISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Science, 82(1), 53–58.
  • Wang, L., Zhang, Y., Gao, X., Duan, Z., & Wang, S. (2010). Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin− streptavidin-amplified system. Journal of Agricultural and Food Chemistry, 58(6), 3265–3270.
  • Wang, Z., Zhang, H., Ni, H., Zhang, S., & Shen, J. (2014). Development of a highly sensitive and specific immunoassay for enrofloxacin based on heterologous coating haptens. Analytica Chimica Acta, 820, 152–158.
  • Wu, J.-X., Zhang, S.-e., & Zhou, X.-p. (2010). Monoclonal antibody-based eLISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. Journal of Zhejiang University Science B, 11(1), 52–60.
  • Wutz, K., Niessner, R., & Seidel, M. (2011). Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchimica Acta, 173(1-2), 1–9.
  • Xia, Y., Su, R., Huang, R., Ding, L., Wang, L., Qi, W., & He, Z. (2017). Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosensors and Bioelectronics, 92, 266–272.
  • Yang, S., & Carlson, K. (2004). Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique. Water Research, 38(14-15), 3155–3166.
  • Yang, K., Hu, Y., & Dong, N. (2016). A novel biosensor based on competitive sERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol. Biosensors and Bioelectronics, 80, 373–377.
  • Youn, H., Lee, K., Her, J., Jeon, J., Mok, J., So, J.-i., … Ban, C. (2019). Aptasensor for multiplex detection of antibiotics based on fRET strategy combined with aptamer/graphene oxide complex. Scientific Reports, 9(1), 1–9.
  • Yu, X., Wen, K., Wang, Z., Zhang, X., Li, C., Zhang, S., & Shen, J. (2016). General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Analytical Chemistry, 88(7), 3512–3520.
  • Zeng, H., Chen, J., Zhang, C., Huang, X.-a., Sun, Y., Xu, Z., & Lei, H. (2016). Broad-specificity chemiluminescence enzyme immunoassay for (fluoro) quinolones: hapten design and molecular modeling study of antibody recognition. Analytical Chemistry, 88(7), 3909–3916.
  • Zhang, J., Wang, Z., Mi, T., Wenren, L., & Wen, K. (2014). A homogeneous fluorescence polarization immunoassay for the determination of cephalexin and cefadroxil in milk. Food Analytical Methods, 7(4), 879–886.
  • Zhang, K., Gan, N., Shen, Z., Cao, J., Hu, F., & Li, T. (2019). Microchip electrophoresis based aptasensor for multiplexed detection of antibiotics in foods via a stir-bar assisted multi-arm junctions recycling for signal amplification. Biosensors and Bioelectronics, 130, 139–146.
  • Zhang, Z., & Cheng, H. (2016). Recent development in sample preparation and analytical techniques for determination of quinolone residues in food products. Critical Reviews in Analytical Chemistry, 47(3), 223–250.
  • Zhang, Z., & Cheng, H. (2017). Recent development in sample preparation and analytical techniques for determination of quinolone residues in food products. Critical Reviews in Analytical Chemistry, 47(3), 223–250.
  • Zhang, L., Long, H., Li, X., Xu, K., Meng, M., Yin, Y., & Xi, R. (2016). Production of a sensitive antibody against sirolimus for chemiluminescence immunoassay potential in its therapeutic drug monitoring. Analytical Methods, 8(33), 6298–6304.
  • Zhao, L., Sun, L., & Chu, X. (2009). Chemiluminescence immunoassay. TrAC Trends in Analytical Chemistry, 28(4), 404–415.
  • Zhou, C., Zhang, X., Huang, X., Guo, X., Cai, Q., & Zhu, S. (2014). Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay. Sensors, 14(11), 21872–21888.
  • Zhou, J., Zhu, K., Xu, F., Wang, W., Jiang, H., Wang, Z., & Ding, S. (2014). Development of a microsphere-based fluorescence immunochromatographic assay for monitoring lincomycin in milk, honey, beef, and swine urine. Journal of Agricultural and Food Chemistry, 62(49), 12061–12066.
  • Zhou, L., Gan, N., Hu, F., Li, T., Cao, Y., & Wu, D. (2018). Microchip electrophoresis array-based aptasensor for multiplex antibiotic detection using functionalized magnetic beads and polymerase chain reaction amplification. Sensors and Actuators B: Chemical, 263, 568–574.
  • Zhou, L., Gan, N., Zhou, Y., Li, T., Cao, Y., & Chen, Y. (2017). A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes. Talanta, 167, 544–549.