1,522
Views
1
CrossRef citations to date
0
Altmetric
Articles

Label-free rapid identification of cooked meat using MIP-quantum weak measurement

, , , , , , & show all
Pages 317-328 | Received 16 Jan 2020, Accepted 02 Feb 2020, Published online: 13 Feb 2020

References

  • Alamprese, C., Amigo, J. M., Casiraghi, E., & Engelsen, S. B. (2016). Identification and quantification of Turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Science, 121, 175–181. doi: 10.1016/j.meatsci.2016.06.018
  • An, X. B., Li, H. W., Yin, Z. Q., Hu, M. J., Huang, W., Xu, B. J., … Han, Z. F. (2018). Experimental three-party quantum random number generator based on dimension witness violation and weak measurement. Optics Letters, 43(14), 3437–3440. doi: 10.1364/OL.43.003437
  • Azam, N. F. N., Roy, S., Lim, S. A., & Uddin Ahmed, M. (2018). Meat species identification using DNA-luminol interaction and their slow diffusion onto the biochip surface. Food Chemistry, 248, 29–36. doi: 10.1016/j.foodchem.2017.12.046
  • Barakat, H., El-Garhy, H. A., & Moustafa, M. M. (2014). Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes. Applied Microbiology and Biotechnology, 98(23), 9805–9816. doi: 10.1007/s00253-014-6084-x
  • Bhat, M. M., Salahuddin, M., Mantoo, I. A., Adil, S., Jalal, H., & Pal, M. A. (2016). Species-specific identification of adulteration in cooked mutton Rista (a Kashmiri Wazwan cuisine product) with beef and buffalo meat through multiplex polymerase chain reaction. Veterinary World, 9(3), 226–230. doi: 10.14202/vetworld.2016.226-230
  • Brioudes, A., & Gummow, B. (2016). Field application of a combined pig and poultry market chain and risk pathway analysis within the Pacific Islands region as a tool for targeted disease surveillance and biosecurity. Preventive Veterinary Medicine, 129, 13–22. doi: 10.1016/j.prevetmed.2016.05.004
  • Dobrovolny, S., Blaschitz, M., Weinmaier, T., Pechatschek, J., Cichna-Markl, M., Indra, A., … Hochegger, R. (2019). Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food. Food Chemistry, 272, 354–361. doi: 10.1016/j.foodchem.2018.08.032
  • Guan, T., Yang, Y., Zhang, Q., He, Y., Xu, N., Li, D., … Wang, X. (2019). Label-free and Non-destruction determination of single- and double-strand DNA based on quantum weak measurement. Scientific Reports, 9(1), 1891. doi: 10.1038/s41598-018-38454-x
  • Hicks, T. M., Knowles, S. O., & Farouk, M. M. (2018). Global provisioning of red meat for flexitarian diets. Frontiers in Nutrition, 5, 50. doi: 10.3389/fnut.2018.00050
  • Himsworth, C. G., Parsons, K. L., Jardine, C., & Patrick, D. M. (2013). Rats, cities, people, and pathogens: A systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector Borne and Zoonotic Diseases, 13(6), 349–359. doi: 10.1089/vbz.2012.1195
  • Hsieh, Y. H., & Ofori, J. A. (2014). Detection of horse meat contamination in raw and heat-processed meat products. Journal of Agricultural and Food Chemistry, 62(52), 12536–12544. doi: 10.1021/jf504032j
  • Li, D., He, Q., He, Y., Xin, M., Zhang, Y., & Shen, Z. (2017). Molecular imprinting sensor based on quantum weak measurement. Biosensors & Bioelectronics, 94, 328–334. doi: 10.1016/j.bios.2017.03.021
  • Li, D., Shen, Z., He, Y., Zhang, Y., Chen, Z., & Ma, H. (2016). Application of quantum weak measurement for glucose concentration detection. Applied Optics, 55(7), 1697–1702. doi: 10.1364/AO.55.001697
  • Lundeen, J. S., & Bamber, C. (2012). Procedure for direct measurement of general quantum states using weak measurement. Physical Review Letters, 108(7), 070402. doi: 10.1103/PhysRevLett.108.070402
  • Montowska, M., Alexander, M. R., Tucker, G. A., & Barrett, D. A. (2014). Rapid detection of peptide markers for authentication purposes in raw and cooked meat using ambient liquid extraction surface analysis mass spectrometry. Analytical Chemistry, 86(20), 10257–10265. doi: 10.1021/ac502449w
  • Nau, J. Y. (2013). [Horse meat: First lessons of a scandal]. Revue Medicale Suisse, 9(376), 532–533.
  • Panti-May, J. A., De Andrade, R. R. C., Gurubel-Gonzalez, Y., Palomo-Arjona, E., Soda-Tamayo, L., Meza-Sulu, J., … Costa, F. (2017). A survey of zoonotic pathogens carried by house mouse and black rat populations in Yucatan, Mexico. Epidemiology and Infection, 145(11), 2287–2295. doi: 10.1017/S0950268817001352
  • Pryde, G. J., O'Brien, J. L., White, A. G., Ralph, T. C., & Wiseman, H. M. (2005). Measurement of quantum weak values of photon polarization. Physical Review Letters, 94(22), 220405. doi: 10.1103/PhysRevLett.94.220405
  • Qu, J. H., Liu, D., Cheng, J. H., Sun, D. W., Ma, J., Pu, H., & Zeng, X. A. (2015). Applications of near-infrared spectroscopy in food safety evaluation and control: A review of recent research advances. Critical Reviews in Food Science and nutrition, 55(13), 1939–1954. doi: 10.1080/10408398.2013.871693
  • Rady, A., & Adedeji, A. (2018). Assessing different processed meats for adulterants using visible-near-infrared spectroscopy. Meat science, 136, 59–67. doi: 10.1016/j.meatsci.2017.10.014
  • Rahmania, H., Sudjadi, Rohman, A. (2015). The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Science, 100, 301–305. doi: 10.1016/j.meatsci.2014.10.028
  • Ritchie, N. W. M., Story, J. G., & Hulet, R. G. (1991). Realization of a measurement of a weak value. Physical Review Letters, 66(9), 1107–1110. doi: 10.1103/PhysRevLett.66.1107
  • Ruiz Orduna, A., Husby, E., Yang, C. T., Ghosh, D., Beaudry, F. (2017) Detection of meat species adulteration using high-resolution mass spectrometry and a proteogenomics strategy. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 34(7), 1110–1120.
  • Simmons, S. C., Taylor, L. J., Marques, M. B., & Williams, L. A., 3rd. (2018). Rat poisoning: A challenging diagnosis with clinical and psychological implications. Laboratory Medicine, 49(3), 272–275.
  • Song, K. Y., Hwang, H. J., & Kim, J. H. (2017). Ultra-fast DNA-based multiplex convection PCR method for meat species identification with possible on-site applications. Food Chemistry, 229, 341–346. doi: 10.1016/j.foodchem.2017.02.085
  • Thienes, C. P., Masiri, J., Benoit, L. A., Barrios-Lopez, B., Samuel, S. A., Cox, D. P., … Samadpour, M. (2018). Quantitative detection of pork contamination in cooked meat products by ELISA. Journal of AOAC International, 101(3), 810–816. doi: 10.5740/jaoacint.17-0036
  • Thienes, C. P., Masiri, J., Benoit, L. A., Barrios-Lopez, B., Samuel, S. A., Meshgi, M. A., … Samadpour, M. (2019). Quantitative detection of chicken and turkey contamination in cooked meat products by ELISA. Journal of AOAC International, 102(2), 557–563. doi: 10.5740/jaoacint.18-0136
  • Ulca, P., Balta, H., Cagin, I., & Senyuva, H. Z. (2013). Meat species identification and Halal authentication using PCR analysis of raw and cooked traditional Turkish foods. Meat Science, 94(3), 280–284. doi: 10.1016/j.meatsci.2013.03.008
  • Wang, W., Zhu, Y., Chen, Y., Xu, X., & Zhou, G. (2015). Rapid visual detection of eight meat species using optical thin-film biosensor chips. Journal of AOAC International, 98(2), 410–414. doi: 10.5740/jaoacint.14-230
  • Xu, Y., Shi, L., Guan, T., Li, D., Yang, Y., Wang, X., … Xie, W. (2018). Optimization of a quantum weak measurement system with digital filtering technology. Applied Optics, 57(27), 7956–7966. doi: 10.1364/AO.57.007956
  • Zhang, Y. J., Shi, L. X., Xu, Y., Zheng, X., Li, J. W., Wu, Q., … He, Y. H. (2019). Optical quantum weak measurement coupled with UV spectrophotometry for sensitively and non-separatedly detecting enantiopurity. Optics Express, 27(7), 9330–9342. doi: 10.1364/OE.27.009330
  • Zhao, H. T., Feng, Y. Z., Chen, W., & Jia, G. F. (2019). Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Meat Science, 151, 75–81. doi: 10.1016/j.meatsci.2019.01.010
  • Zheng, X., Li, Y., Wei, W., & Peng, Y. (2019). Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Science, 149, 55–62. doi: 10.1016/j.meatsci.2018.11.005