1,770
Views
17
CrossRef citations to date
0
Altmetric
Articles

Development of novel biomimetic enzyme-linked immunosorbent assay method based on Au@SiO2 nanozyme labelling for the detection of sulfadiazine

, , , , &
Pages 341-351 | Received 19 Dec 2019, Accepted 05 Feb 2020, Published online: 27 Feb 2020

References

  • Bi, X., & Liu, Z. (2014). Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting. Analytical Chemistry, 86(1), 959–966. doi: 10.1021/ac403736y
  • Chu, J. S., Xu, Y., He, Q. F., Wang, L. H., & Lu, J. (2011). Determination of sulfadianzine residues in pork by direct competitive chemiluminescence enzyme immunoassay. Food Science, 32(10), 124–129.
  • Danezis, G. P., Anagnostopoulos, C. J., Liapis, K., & Koupparis, M. A. (2016). Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using hilic chromatography-ms/ms in various food matrices. Analytica Chimica Acta, 942, 121–138. doi: 10.1016/j.aca.2016.09.011
  • Deng, H. H., Li, G. W., Hong, L., Liu, A. L., Chen, W., Lin, X. H., & Xia, X. H. (2014). Colorimetric sensor based on dual-functional gold nanoparticles: Analyte-recognition and peroxidase-like activity. Food Chemistry, 147, 257–261. doi: 10.1016/j.foodchem.2013.09.151
  • Dognon, S. R., Degand, G., Douny, C., Delahaut, P., Igout, A., Dahouda, M., Youssao A. K. I., Scippo, M. L. (2018). The modified new two plates test for detecting tetracycline, beta-lactam, and sulfonamide antibiotic residues in kidney and muscle of cattle slaughtered in north-east Benin. Food Analytical Methods, 11, 3406–3416. doi: 10.1007/s12161-018-1322-y
  • He, W., Liu, Y., Yuan, J., Yin, J. J., Wu, X., Hu, X., Zhang Ke, Liu Jianbo, Chen Chunying, Ji Yinglu, Guo Yuting, (2011). Au@pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 32(4), 1139–1147. doi: 10.1016/j.biomaterials.2010.09.040
  • Hiba, A., Carine, A., Haifa, A. R., Ryszard, L., & Farouk, J. (2016). Monitoring of twenty-two sulfonamides in edible tissues: Investigation of new metabolites and their potential toxicity. Food Chemistry, 192, 212–227. doi: 10.1016/j.foodchem.2015.06.093
  • Huang, L., Wu, Q., Wang, J., Foda, M., Liu, J., Cai, K., & Han, H. (2014). A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates. Chemical Communications, 50(22), 2896. doi: 10.1039/c3cc48405j
  • Jansomboon, W., Boontanon, S. K., Boontanon, N., Polprasert, C., & Da, C. T. (2016). Monitoring and determination of sulfonamide antibiotics (sulfamethoxydiazine, sulfamethazine, sulfamethoxazole and sulfadiazine) in imported pangasius catfish products in Thailand using liquid chromatography coupled with tandem mass spectrometry. Food Chemistry, 212, 635–640. doi: 10.1016/j.foodchem.2016.06.026
  • Jiang, W., Wang, Z., Beier, R. C., Jiang, H., Wu, Y., & Shen, J. (2013). Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay. Analytical Chemistry, 85(4), 1995–1999. doi: 10.1021/ac303606h
  • Jiang, M. D., Wu, S., Xu, L. H., Qiao, X. G., & Xu, Z. X. (2017). Determination of trichlorfon residues in vegetables using a quantum dot-labeled biomimetic immunoassay method followed by capillary electrophoresis. Food and Agricultural Immunology, 28(6), 1242–1255. doi: 10.1080/09540105.2017.1333579
  • Khalili, H., Soudbakhsh, A., & Talasaz, A. H. (2011). Severe hepatotoxicity and probable hepatorenal syndrome associated with sulfadiazine. American Journal of Health-System Pharmacy, 68(10), 888–892. doi: 10.2146/ajhp100516
  • Lata, K., Sharma, R., Naik, L., Raiput, Y. S., & Mann, B. (2015). Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chemistry, 184, 176–182. doi: 10.1016/j.foodchem.2015.03.101
  • Li, L., Lin, Z. Z., Peng, A. H., Zhong, H. P., Chen, X. M., & Huang, Z. Y. (2016). Biomimetic elisa detection of malachite green based on magnetic molecularly imprinted polymers. Food Chemistry, 1035, 25–30.
  • Lin, Y., Ren, J., & Qu, X. (2014). Nano-gold as artificial enzymes: Hidden talents. Advanced Materials, 26(25), 4200–4217. doi: 10.1002/adma.201400238
  • Liu, B., Ge, Y., Zhang, Y., Song, Y., Lv, Y., & Wang, X. X. (2012). Production of the class-specific antibody and development of direct competitive elisa for multi-residue detection of organophosphorus pesticides. Food and Agricultural Immunology, 23(2), 157–168. doi: 10.1080/09540105.2011.608120
  • Mao, Y., Bao, Y., Han, D., Li, F., & Niu, L. (2012). Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosensors & Bioelectronics, 38(1), 55–60. doi: 10.1016/j.bios.2012.04.043
  • Robert, C., Brasseur, P. Y., Dubois, M., Delahaut, P., & Gillard, N. (2016). Development and validation of rapid multiresidue and multi-class analysis for antibiotics and anthelmintics in feed by ultra high performance liquid chromatography coupled to tandem mass spectrometry. Food Additives & Contaminants: Part A, 33(8), 1312–1323.
  • Santos, L., & Ramos, F. (2016). Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends in Food Science & Technology, 52, 16–30. doi: 10.1016/j.tifs.2016.03.015
  • Shah, J., Purohit, R., Singh, R., Karakoti, A. S., & Singh, S. (2015). Atp-enhanced peroxidase-like activity of gold nanoparticles. Journal of Colloid and Interface Science, 456, 100–107. doi: 10.1016/j.jcis.2015.06.015
  • Shao, K., Wang, J., Jiang, X., Shao, F., Li, T., Ye, S., Chen Lu, Han, H. (2014). Stretch-stowage-growth strategy to fabricate tunable triply-amplified electrochemiluminescence immunosensor for ultrasensitive detection of pseudorabies virus antibody. Analytical Chemistry, 86(12), 5749–5757. doi: 10.1021/ac500175y
  • Shen, Y. D., Deng, X. F., Xu, Z. L., Wang, Y., Lei, H. T., Wang, H., Yang J. Y., Xiao Z. L., Sun, Y. M. (2011). Simultaneous determination of malachite green, brilliant green and crystal violet in grass carp tissues by a broad-specificity indirect competitive enzyme-linked immunosorbent assay. Analytica Chimica Acta, 707(1-2), 0–154. doi: 10.1016/j.aca.2011.09.006
  • Shi, Y., Peng, D. D., Shi, C. H., Zhang, X., Xie, Y. T., & Lu, B. (2011). Selective determination of trace 17β-estradiol in dairy and meat samples by molecularly imprinted solid-phase extraction and hplc. Food Chemistry, 126(4), 1916–1925. doi: 10.1016/j.foodchem.2010.12.020
  • Song, Y., Wang, Y. Y., Zhang, Y., & Wang, S. (2011). Development of enzyme-linked immunosorbent assay for rapid determination of sildenafil in adulterated functional foods. Food and Agricultural Immunology, 23(4), 1–14.
  • Sun, R., & Zhuang, H. (2015). Development of a highly sensitive biotin–streptavidin enzyme-linked immunosorbent assay for detecting diethyl phthalate based on a specific polyclonal antibody. Food and Agricultural Immunology, 26(5), 746–760. doi: 10.1080/09540105.2015.1027666
  • Tang, Y., Gao, J., Liu, X., Gao, X., Ma, T., Lu, X., & Li, J. (2017a). Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody. Food Chemistry, 228, 62–69. doi: 10.1016/j.foodchem.2017.01.102
  • Tang, Y., Zhang, Y., Zhang, H., Liu, X., Gao, X., & Lv, C. (2017b). Visual flow-through column biomimetic immunoassay using molecularly imprinted polymer as artificial antibody for rapid detection of clenbuterol in water sample. Food and Agricultural Immunology, 28(52), 949–957. doi: 10.1080/09540105.2017.1320359
  • Vosough, M., Onilghi, M. N., & Salemi, A. (2016). Optimization of matrix solid-phase dispersion coupled with high performance liquid chromatography for determination of selected antibiotics in municipal sewage sludge. Analytical Methods, 8(24), 4853–4860. doi: 10.1039/C6AY00112B
  • Wang, S. M., Jiang, M. D., Ju, Z. L., Qiao, X. G., & Xu, Z. X. (2017). A flow-injection chemiluminescent biomimetic immunoassay method using a molecularly imprinted polymer as a biomimetic antibody for the determination of trichlorfon. Food and Agricultural Immunology, 29(2), 159–170.
  • Wiester, M. J., Ulmann, P. A., & Mirkin, C. A. (2011). Enzyme mimics based upon supramolecular coordination chemistry. Angewandte Chemie International Edition, 50(1), 114–137. doi: 10.1002/anie.201000380
  • Yamada, Y., Tsung, C. K., Huang, W., Huo, Z., Habas, S. E., Soejima, T., Aliaga C. E, Somorjai G. A., Yang, P. (2011). Nature Chemistry, 3(5), 372–376. doi: 10.1038/nchem.1018
  • Zhang, C., Cui, H., Han, Y., Yu, F., & Shi, X. (2017). Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chemistry, 240, 893–897. doi: 10.1016/j.foodchem.2017.07.109