1,207
Views
4
CrossRef citations to date
0
Altmetric
Articles

Development and validation of an immunochromatography test strip for rapid detection of pyrimethanil residues

, , , , &
Pages 393-405 | Received 29 Nov 2019, Accepted 17 Feb 2020, Published online: 04 Mar 2020

References

  • Amvrazi, E. G., & Tsiropoulos, N. G. (2009). Application of single-drop microextraction coupled with gas chromatography for the determination of multiclass pesticides in vegetables with nitrogen phosphorus and electron capture detection. Journal of Chromatography A, 1216(14), 2789–2797. doi: 10.1016/j.chroma.2008.07.070
  • Cao, Y., Shi, H. X., Le, T., Tang, R., & Xie, Y. (2019). Development a monoclonal antibody based enzyme linked immunosorbent assay for screening pyrimethanil in fruits and vegetables. Food and Agricultural Immunology, 30(1), 548–563. doi: 10.1080/09540105.2019.1608160
  • Chen, Z., Wu, X., Xu, L., Liu, L., Kuang, H., & Cui, G. (2019). Development of immunocolloidal strip for rapid detection of pyrimethanil. Food and Agricultural Immunology, 30(1), 1239–1252. doi: 10.1080/09540105.2019.1677566
  • Esteve-Turrillas, F. A., Abad-Somovilla, A., Quinones-Reyes, G., Agullo, C., Mercader, J. V., & Abad-Fuentes, A. (2015). Monoclonal antibody-based immunoassays for cyprodinil residue analysis in QuEChERS-based fruit extracts. Food Chemistry, 187, 530–536. doi: 10.1016/j.foodchem.2015.04.119
  • Esteve-Turrillas, F. A., Mercader, J. V., Agullo, C., Abad-Somovilla, A., & Abad-Fuentes, A. (2015). Site-heterologous haptens and competitive monoclonal antibody-based immunoassays for pyrimethanil residue analysis in foodstuffs. LWT – Food Science and Technology, 63(1), 604–611. doi: 10.1016/j.lwt.2015.03.074
  • Fenik, J., Tankiewicz, M., & Biziuk, M. (2011). Properties and determination of pesticides in fruits and vegetables. TrAC Trends in Analytical Chemistry, 30, 814–826. doi: 10.1016/j.trac.2011.02.008
  • Gonzalez-Rodriguez, R. M., Rial-Otero, R., Cancho-Grande, B., & Simal-Gandara, J. (2008). Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants. Journal of Chromatography A, 1196-1197, 100–109. doi: 10.1016/j.chroma.2008.02.087
  • Kong, D., Xie, Z., Liu, L., Song, S., Kuang, H., & Xu, C. (2017). Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of vancomycin in raw milk and animal feed. Food and Agricultural Immunology, 28(3), 414–426. doi: 10.1080/09540105.2017.1293014
  • Le, T., Xu, J., Jia, Y. Y., He, H. Q., Niu, X. D., & Chen, Y. (2012). Development and validation of an immunochromatographic assay for the rapid detection of quinoxaline-2-carboxylic acid, the major metabolite of carbadox in the edible tissues of pigs. Food Additives & Contaminants: Part A, 29(6), 925–934. doi: 10.1080/19440049.2012.662703
  • Le, T., Yan, P., Xu, J., & Hao, Y. (2013). A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chemistry, 138(2-3), 1610–1615. doi: 10.1016/j.foodchem.2012.11.077
  • Le, T., Yu, H., Wang, X., Ngom, B., Guo, Y., & Bi, D. (2011). Development and validation of an immunochromatographic test strip for rapid detection of doxycycline residues in swine muscle and liver. Food and Agricultural Immunology, 22(3), 235–246. doi: 10.1080/09540105.2011.556713
  • Lehotay, S. J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. Journal of Aoac International, 90(2), 485–520. doi: 10.1093/jaoac/90.2.485
  • Liang, X., Liu, X., Dong, F., Xu, J., Qin, D., Li, Y., … Zheng, Y. (2013). Simultaneous determination of pyrimethanil, cyprodinil, mepanipyrim and its metabolite in fresh and home-processed fruit and vegetables by a QuEChERS method coupled with UPLC-MS/MS. Food Additives & Contaminants: Part A, 30(4), 713–721. doi: 10.1080/19440049.2013.768777
  • Mandrile, L., Giovannozzi, A. M., Durbiano, F., Martra, G., & Rossi, A. M. (2018). Rapid and sensitive detection of pyrimethanil residues on pome fruits by surface enhanced Raman scattering. Food Chemistry, 244, 16–24. doi: 10.1016/j.foodchem.2017.10.003
  • Mercader, J. V., Esteve-Turrillas, F. A., Agullo, C., Abad-Somovilla, A., & Abad-Fuentes, A. (2012). Antibody generation and immunoassay development in diverse formats for pyrimethanil specific and sensitive analysis. The Analyst, 137(23), 5672–5679. doi: 10.1039/c2an35801h
  • Ortelli, D., Edder, P., & Corvi, C. (2004). Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography-electrospray-tandem mass spectrometry. Analytica Chimica Acta, 520(1–2), 33–45. doi: 10.1016/j.aca.2004.03.037
  • Park, J. H., Park, J. S., Abd El-Aty, A. M., Rahman, M. M., Na, T. W., & Shim, J. H. (2013). Analysis of imidacloprid and pyrimethanil in shallot (Allium ascalonicum) grown under greenhouse conditions using tandem mass spectrometry: Establishment of pre-harvest residue limits. Biomedical Chromatography, 27(4), 451–457. doi: 10.1002/bmc.2812
  • Raeppel, C., Nief, M., Fabritius, M., Racault, L., Appenzeller, B. M., & Millet, M. (2011). Simultaneous analysis of pesticides from different chemical classes by using a derivatisation step and gas chromatography-mass spectrometry. Journal of Chromatography A, 1218(44), 8123–8129. doi: 10.1016/j.chroma.2011.08.098
  • Rodriguez-Cabo, T., Rodriguez, I., Ramil, M., & Cela, R. (2011). Dispersive liquid-liquid microextraction using non-chlorinated, lighter than water solvents for gas chromatography mass spectrometry determination of fungicides in wine. Journal of Chromatography A, 1218(38), 6603–6611. doi: 10.1016/j.chroma.2011.07.054
  • Shim, J. H., Abd El-Aty, A. M., Choi, J. H., & Kang, C. A. (2007). Determination of field-incurred pyrimethanil residues in persimmon (Diospyros kaki Linn) by liquid chromatography. Biomedical Chromatography, 21(12), 1279–1283. doi: 10.1002/bmc.884
  • Xie, Y., Zhang, L., & Le, T. (2017). An immunochromatography test strip for rapid, quantitative and sensitive detection of furazolidone metabolite, 3-amino-2-oxazolidinone, in animal tissues. Food and Agricultural Immunology, 28(3), 403–413. doi: 10.1080/09540105.2017.1293013
  • Zhou, Y. W., Han, L. T., Cheng, J., Guo, F., Zhi, X. R., Hu, H. L., & Chen, G. (2011). Dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for simultaneous analysis of diethofencarb and pyrimethanil in apple pulp and peel. Analytical and Bioanalytical Chemistry, 399(5), 1901–1906. doi: 10.1007/s00216-010-4567-x