2,966
Views
8
CrossRef citations to date
0
Altmetric
Articles

Antibody developments for metal ions and their applications

, ORCID Icon &
Pages 1079-1103 | Received 06 Aug 2020, Accepted 17 Sep 2020, Published online: 19 Oct 2020

References

  • Abdelnabi, H., Doerr, R. J., Evans, N. H., Farrell, E. E., Chan, H. W., Balu, D., Gona, J., & Schweighardt, S. (1994). Radioimmunodetection of colorectal-carcinoma with In-111 labeled monoclonal-antibody IVP ZCE 025 (a tissue culture-produced anti-CEA mAB). Nuclear Medicine Communications, 15(2), 81–93. https://doi.org/10.1097/00006231-199402000-00004
  • Abe, K., Nakamura, K., Arao, T., Sakurai, Y., Nakano, A., Suginuma, C., Tawarada, K., & Sasaki, K. (2011). Immunochromatography for the rapid determination of cadmium concentrations in wheat grain and eggplant. Journal of the Science of Food and Agriculture, 91(8), 1392–1397. https://doi.org/10.1002/jsfa.4321
  • Baker, B. L., & Hultquist, D. E. (1978). Copper-binding immunoglobulin from a myeloma patient -studies of copper-binding site. Journal of Biological Chemistry, 253(23), 8444–8451.
  • Bartos, A., Niedzielski, P., Buczylko, K., & Leszczynska, J. (2019). Nickel chelate complexes as a target for polyclonal antibodies raised in rabbits and mice. International Journal of Environmental Analytical Chemistry, 1691179.
  • Bencko, V., Vasilieva, E. V., & Symon, K. (1980). Immunological aspects of exposure to emissions from burning coal of high beryllium content. Environmental Research, 22(2), 439–449. https://doi.org/10.1016/0013-9351(80)90156-5
  • Berlina, A. N., Zherdev, A. V., & Dzantiev, B. B. (2019). ELISA and lateral flow immunoassay for the detection of food colorants: State of the art. Critical Reviews in Analytical Chemistry, 49(3), 209–223. https://doi.org/10.1080/10408347.2018.1503942
  • Blake, D. A., Blake, R. C., Khosraviani, M., & Pavlov, A. R. (1998). Immunoassays for metal ions. Analytica Chimica Acta, 376(1), 13–19. https://doi.org/10.1016/S0003-2670(98)00437-1
  • Blake, D. A., Chakrabarti, P., Khosraviani, M., Hatcher, F. M., Westhoff, C. M., Goebel, P., Wylie, D. E., & Blake, R. C. (1996). Metal binding properties of a monoclonal antibody directed toward metal-chelate complexes. Journal of Biological Chemistry, 271(44), 27677–27685. https://doi.org/10.1074/jbc.271.44.27677
  • Blake, D. A., Jones, R. M., Blake, R. C., Pavlov, A. R., Darwish, I. A., & Yu, H. N. (2001a). Antibody-based sensors for heavy metal ions. Biosensors & Bioelectronics, 16(9–12), 799–809. https://doi.org/10.1016/S0956-5663(01)00223-8
  • Blake, R. C., Pavlov, A. R., & Blake, D. A. (1999). Automated kinetic exclusion assays to quantify protein binding interactions in homogeneous solution. Analytical Biochemistry, 272(2), 123–134. https://doi.org/10.1006/abio.1999.4176
  • Blake, R. C., Pavlov, A. R., Khosraviani, M., Ensley, H. E., Kiefer, G. E., Yu, H., Li, X., & Blake, D. A. (2004). Novel monoclonal antibodies with specificity for chelated uranium(VI): Isolation and binding properties. Bioconjugate Chemistry, 15(5), 1125–1136. https://doi.org/10.1021/bc049889p
  • Blake, D. A., Pavlov, A. R., Yu, H. N., Kohsraviani, M., Ensley, H. E., & Blake, R. C. (2001b). Antibodies and antibody-based assays for hexavalent uranium. Analytica Chimica Acta, 444(1), 3–11. https://doi.org/10.1016/S0003-2670(01)01151-5
  • Boden, V., Colin, C., Barbet, J., Ledoussal, J. M., & Vijayalakshmi, M. (1995). Complementary approach for the determination of histidine in the metal-binding site of an anti-DTPA-indium monoclonal-antibody. Enzyme Engineering Xii, 750, 284–287.
  • Brechbiel, M. W., Gansow, O. A., Pippin, C. G., Rogers, R. D., & Planalp, R. P. (1996). Preparation of the novel chelating agent N-(2-aminoethyl)-trans-1,2-diaminocyclohexane-N,N’,N''-pentaacetic acid (H5CyDTPA), a preorganized analogue of diethylenetriaminepentaacetic acid (H5DTPA), and the structures of BiIII(CyDTPA)2- and BiIII(H2DTPA) complexes. Inorganic Chemistry, 35(21), 6343–6348. https://doi.org/10.1021/ic951326p
  • Carter, K. P., Young, A. M., & Palmer, A. E. (2014). Fluorescent sensors for measuring metal ions in living systems. Chemical Reviews, 114(8), 4564–4601. https://doi.org/10.1021/cr400546e
  • Chakrabarti, P., Hatcher, F. M., Blake, R. C., Ladd, P. A., & Blake, D. A. (1994). Enzyme-immunoassay to determine heavy-metals using antibodies to specific metal-EDTA complexes-optimization and validation of an immunoassay for soluble indium. Analytical Biochemistry, 217(1), 70–75. https://doi.org/10.1006/abio.1994.1084
  • Chang, C. H., Sharkey, R. M., Rossi, E. A., Karacay, H., McBride, W., Hansen, H. J., Chatal, J. F., Barbet, J., & Goldenberg, D. M. (2002). Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Molecular Cancer Therapeutics, 1(7), 553–563.
  • Chatal, J. F., Gestin, J. F., Faivrechauvet, A., Mease, R. C., Meinken, G., & Srivastava, S. C. (1994). Clinical-evaluation of 2 new bifunctional chelating-agents for immunoscintigraphy (IS) with indium-111-anti-CEA monoclonal antibody. Journal of Nuclear Medicine, 35(5), P12–P12.
  • Chen, G., Jin, M. J., Ma, J., Yan, M. M., Cui, X. Y., Wang, Y. S., Zhang, X. Y., Li, H., Zheng, W. J., Zhang, Y. D., Abd El-Aty, A. M., Hacimuftuoglu, A., & Wang, J. (2020). Competitive bio-barcode immunoassay for highly sensitive detection of parathion based on bimetallic nanozyme catalysis. Journal of Agricultural and Food Chemistry, 68(2), 660–668. https://doi.org/10.1021/acs.jafc.9b06125
  • Clarke, S. M. (1991). A novel enzyme-linked-immunosorbent-assay (ELISA) for the detection of beryllium antibodies. Journal of Immunological Methods, 137(1), 65–72. https://doi.org/10.1016/0022-1759(91)90394-U
  • Comba, P., Jermilova, U., Orvig, C., Patrick, B. O., Ramogida, C. F., Ruck, K., Schneider, C., & Starke, M. (2017). Octadentate picolinic acid-based bispidine ligand for radiometal ions. Chemistry-a European Journal, 23(63), 15945–15956. https://doi.org/10.1002/chem.201702284
  • Corneillie, T. M., Whetstone, P. A., Fisher, A. J., & Meares, C. F. (2003). A rare earth-DOTA-binding antibody: Probe properties and binding affinity across the lanthanide series. Journal of the American Chemical Society, 125(12), 3436–3437. https://doi.org/10.1021/ja029363k
  • Corneillie, T. M., Whetstone, P. A., & Meares, C. F. (2006). Irreversibly binding anti-metal chelate antibodies: Artificial receptors for pretargeting. Journal of Inorganic Biochemistry, 100(5–6), 882–890. https://doi.org/10.1016/j.jinorgbio.2006.01.004
  • Darwish, I. A., & Blake, D. A. (2001). One-step competitive immunoassay for cadmium ions: Development and validation for environmental water samples. Analytical Chemistry, 73(8), 1889–1895. https://doi.org/10.1021/ac0012905
  • Darwish, I. A., & Blake, D. A. (2002). Development and validation of a one-step immunoassay for determination of cadmium in human serum. Analytical Chemistry, 74(1), 52–58. https://doi.org/10.1021/ac010510r
  • Date, Y., Aota, A., Terakado, S., Sasaki, K., Matsumoto, N., Watanabe, Y., Matsue, T., & Ohmura, N. (2013). Trace-level mercury ion (Hg2+) analysis in aqueous sample based on solid-phase extraction followed by microfluidic immunoassay. Analytical Chemistry, 85(1), 434–440.
  • Date, Y., Terakado, S., Sasaki, K., Aota, A., Matsumoto, N., Shiku, H., Ino, K., Watanabe, Y., Matsue, T., & Ohmura, N. (2012). Microfluidic heavy metal immunoassay based on absorbance measurement. Biosensors & Bioelectronics, 33(1), 106–112.
  • Day, R. J., & Reilley, C. N. (1964). Nuclear magnetic resonance studies of metal aminopolycarboxylate complexes. Lability of individual metal ligand bonds in (ethylenedinitrilo)-tetraacetate complexes. Analytical Chemistry, 36(6), 1073–1076.
  • Delehanty, J. B., Jones, R. M., Bishop, T. C., & Blake, D. A. (2003). Identification of important residues in metal - chelate recognition by monoclonal antibodies. Biochemistry, 42(48), 14173–14183. https://doi.org/10.1021/bi034839d
  • Divgi, C. R., McDermott, K., Johnson, D. K., Schnobrich, K. E., Finn, R. D., Cohen, A. M., & Larson, S. M. (1991). Detection of hepatic metastases from colorectal-carcinoma using indium-111 (111In) labeled monoclonal-antibody (mAB) - MSKCC experience with mAB 111In-C110. Nuclear Medicine and Biology, 18(7), 705–710.
  • Dong, B. L., Zhao, S. J., Li, H. F., Wen, K., Ke, Y. B., Shen, J. Z., Zhang, S. X., Shi, W. M., & Wang, Z. H. (2019). Design, synthesis and characterization of tracers and development of a fluorescence polarization immunoassay for the rapid detection of ractopamine in pork. Food Chemistry, 271, 9–17. https://doi.org/10.1016/j.foodchem.2018.07.147
  • Duta, M., Asfari, Z., Hagege, A., Thuery, P., & Leroy, M. (2004). Synthesis and complexation studies of various precursors based on calix 4 arene-crown-5 and-6 for the immunoanalysis of potassium and caesium ions. Supramolecular Chemistry, 16(3), 205–215. https://doi.org/10.1080/10610270310001647001
  • Feng, X., Pak, R. H., Kroger, L. A., Moran, J. K., DeNardo, D. G., Meares, C. F., DeNardo, G. L., & DeNardo, S. J. (1998). New anti-Cu-TETA and anti-Y-DOTA monoclonal antibodies for potential use in the pre-targeted delivery of radiopharmaceuticals to tumor. Hybridoma, 17(2), 125–132. https://doi.org/10.1089/hyb.1998.17.125
  • Fu, Q. Q., Liu, H. W. L., Wu, Z., Liu, A., Yao, C. Z., Li, X. Q., Xiao, W., Yu, S. T., Luo, Z., & Tang, Y. (2015). Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. Journal of Nanobiotechnology, 13.
  • Galvidis, I. A., Eremin, S. A., & Burkin, M. A. (2020). Development of indirect competitive enzyme-linked immunoassay of colistin for milk and egg analysis. Food and Agricultural Immunology, 31(1), 424–434. https://doi.org/10.1080/09540105.2020.1733935
  • Gao, W., Nan, T. G., Tan, G. Y., Zhao, H. W., Wang, B. M., Li, Q. X., & Meng, F. Y. (2012). Development of a sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of cadmium ions in water, soil and rape samples. Food and Agricultural Immunology, 23(1), 27–39. https://doi.org/10.1080/09540105.2011.589045
  • Gao, Y., Zhou, Y. Z., & Chandrawati, R. (2020). Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). Acs Applied Nano Materials, 3(1), 1–21. https://doi.org/10.1021/acsanm.9b02003
  • He, H., Tang, B., Sun, C., Yang, S. G., Zheng, W. J., & Hua, Z. C. (2011). Preparation of hapten-specific monoclonal antibody for cadmium and its ELISA application to aqueous samples. Frontiers of Environmental Science & Engineering in China, 5(3), 409–416. https://doi.org/10.1007/s11783-011-0349-8
  • Huo, J. Q., Barnych, B., Li, Z. F., Wan, D. B., Li, D. Y., Vasylieva, N., Knezevic, S. Z., Osipitan, O. A., Scott, J. E., Zhang, J. L., & Hammock, B. D. (2019). Hapten synthesis, antibody development, and a highly sensitive indirect competitive chemiluminescent enzyme immunoassay for detection of dicamba. Journal of Agricultural and Food Chemistry, 67(20), 5711–5719.
  • Jemil, S., Fatemi, A., Williamson, D. J., & Moore, G. R. (1992). A Al-27 NMR investigation of Al3+ binding to small carboxylic-acids and the proteins albumin and transferrin. Journal of Inorganic Biochemistry, 46(1), 35–40. https://doi.org/10.1016/0162-0134(92)80061-Y
  • Johnson, D. K. (1999). A fluorescence polarization immunoassay for cadmium(II). Analytica Chimica Acta, 399(1-2), 161–172. https://doi.org/10.1016/S0003-2670(99)00587-5
  • Johnson, D. K., Combs, S. M., Parsen, J. D., & Jolley, M. E. (2002). Lead analysis by anti-chelate fluorescence polarization immunoassay. Environmental Science & Technology, 36(5), 1042–1047. https://doi.org/10.1021/es011114t
  • Jones, R. M., Yu, H. N., Delehanty, J. B., & Blake, D. A. (2002). Monoclonal antibodies that recognize minimal differences in the three-dimensional structures of metal-chelate complexes. Bioconjugate Chemistry, 13(3), 408–415. https://doi.org/10.1021/bc0155418
  • Kang, G. F., Wang, Y. Z., Bai, Y. F., Chen, Z. Z., & Feng, F. (2017). Surface plasmon resonance based competitive immunoassay for Cd2+. Rsc Advances, 7(70), 44054–44058. https://doi.org/10.1039/C7RA07635E
  • Khosraviani, M., & Blake, R. C. (2000). Binding properties of a monoclonal antibody directed toward lead-chelate complexes. Bioconjugate Chemistry, 11(2), 267–277. https://doi.org/10.1021/bc9901548
  • Khosraviani, M., Pavlov, A. R., Flowers, G. C., & Blake, D. A. (1998). Detection of heavy metals by immunoassay: Optimization and validation of a rapid, portable assay for ionic cadmium. Environmental Science & Technology, 32(1), 137–142. https://doi.org/10.1021/es9703943
  • Kobayashi, Y., Murata, K., Harada, A., & Yamaguchi, H. (2020). A palladium-catalyst stabilized in the chiral environment of a monoclonal antibody in water. Chemical Communications, 56(10), 1605–1607. https://doi.org/10.1039/C9CC08756G
  • Kong, T., Li, X. B., Liu, G. W., Xie, G. H., Wang, Z., Zhang, Z. G., Zhang, Y., Sun, J., & Tang, J. (2012). Preparation of specific monoclonal antibodies against chelated copper ions. Biological Trace Element Research, 145(3), 388–395. https://doi.org/10.1007/s12011-011-9206-7
  • Kula, R. J., Sawyer, D. T., Chan, S. I., & Finley, C. M. (1963). Nuclear magnetic resonance studies of metal-ethylenediaminetetraacetic acid complexes. Journal of the American Chemical Society, 85(19), 2930–2936. https://doi.org/10.1021/ja00902a016
  • Levy, R., Shohat, L., & Solomon, B. (1998). Specificity of an anti-aluminium monoclonal antibody toward free and protein-bound aluminium. Journal of Inorganic Biochemistry, 69(3), 159–163. https://doi.org/10.1016/S0162-0134(97)10013-7
  • Lindgarde, F., & Zettervall, O. (1974). Characterization of a calcium-binding igG myeloma protein. Scandinavian Journal of Immunology, 3(3), 277–285. https://doi.org/10.1111/j.1365-3083.1974.tb01258.x
  • Liu, G. L., Wang, J. F., Li, Z. Y., Liang, S. Z., & Wang, X. N. (2009). Immunoassay for cadmium detection and quantification. Biomedical and Environmental Sciences, 22(3), 188–193. https://doi.org/10.1016/S0895-3988(09)60044-1
  • Liu, X., Xiang, J. J., Tang, Y., Zhang, X. L., Fu, Q. Q., Zou, J. H., & Lin, Y. H. (2012). Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Analytica Chimica Acta, 745, 99–105. https://doi.org/10.1016/j.aca.2012.06.029
  • Lou, Y., Yang, F. L., Zhu, X. X., & Liu, F. Q. (2009). Production of a specific monoclonal antibody against mercury-chelate complexes and its application in antibody-based assays. Food and Agricultural Immunology, 20(1), 23–33. https://doi.org/10.1080/09540100802626479
  • Love, R. A., Villafranca, J. E., Aust, R. M., Nakamura, K. K., Jue, R. A., Major, J. G., Radhakrishnan, R., & Butler, W. F. (1993). How the anti-(metal chelate) antibody CHA255 is specific for the metal-ion of its antigen-X-ray structures for 2 Fab’ hapten complexes with different metals in the chelate. Biochemistry, 32(41), 10950–10959. https://doi.org/10.1021/bi00092a004
  • Maecke, H. R., Riesen, A., & Ritter, W. (1989). The molecular-structure of indium-DTPA. Journal of Nuclear Medicine, 30(7), 1235–1239.
  • Mandappa, I. M., Ranjini, A., Haware, D. J., Manjunath, M. N., & Manonmani, H. K. (2012). Immunoassay for the detection of lead ions in environmental water samples. International Journal of Environmental Analytical Chemistry, 92(3), 334–343. https://doi.org/10.1080/03067319.2010.525790
  • Marzo, A. M. L., Pons, J., Blake, D. A., & Merkoci, A. (2013). All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Analytical Chemistry, 85(7), 3532–3538. https://doi.org/10.1021/ac3034536
  • Meares, C. F. (1986). Chelating-agents for the binding of metal-ions to antibodies. Nuclear Medicine and Biology, 13(4), 311–318.
  • Ouyang, H., Shu, Q., Wang, W. W., Wang, Z. X., Yang, S. J., Wang, L., & Fu, Z. F. (2016). An ultra-facile and label-free immunoassay strategy for detection of copper (II) utilizing chemiluminescence self-enhancement of Cu(II)-ethylenediaminetetraacetate chelate. Biosensors & Bioelectronics, 85, 157–163. https://doi.org/10.1016/j.bios.2016.05.007
  • Pennacchio, A., Varriale, A., Scala, A., Marzullo, V. M., Staiano, M., & D'Auria, S. (2016). A novel fluorescence polarization assay for determination of penicillin G in milk. Food Chemistry, 190, 381–385. https://doi.org/10.1016/j.foodchem.2015.05.127
  • Prudente, C. K., Sirios, R. S., & Cote, S. (2010). Synthesis and application of organomercury haptens for enzyme-linked immunoassay of inorganic and organic mercury. Analytical Biochemistry, 404(2), 179–185. https://doi.org/10.1016/j.ab.2010.05.021
  • Quang, D. T., & Kim, J. S. (2010). Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chemical Reviews, 110(10), 6280–6301. https://doi.org/10.1021/cr100154p
  • Reardan, D. T., Meares, C. F., Goodwin, D. A., McTigue, M., David, G. S., Stone, M. R., Leung, J. P., Bartholomew, R. M., & Frincke, J. M. (1985). Antibodies against metal-chelates. Nature, 316(6025), 265–268. https://doi.org/10.1038/316265a0
  • Sadler, P. J., Tucker, A., & Viles, J. H. (1994). Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding-site of serum albumins comparison with Co2+, Cd2+ and Al3+. European Journal of Biochemistry, 220(1), 193–200. https://doi.org/10.1111/j.1432-1033.1994.tb18614.x
  • Safi, S., Asfari, Z., Leroy, M., Basset, C., Quemeneur, E., Vidaud, C., & Hagege, A. (2009). Design and characterization of immunogens for raising antibodies directed towards chelated alkali metals. The Analyst, 134(2), 256–260. https://doi.org/10.1039/B810356A
  • Sasaki, K., Oguma, S., Glass, T., Namiki, Y., Sugiyama, H., Ohmura, N., & Blako, D. A. (2008). Simple method to reduce interference from excess magnesium in cadmium immunoassays. Journal of Agricultural and Food Chemistry, 56(17), 7613–7616. https://doi.org/10.1021/jf8011147
  • Sasaki, K., Oguma, S., Namiki, Y., & Ohmura, N. (2009). Monoclonal antibody to trivalent chromium chelate complex and its application to measurement of the total chromium concentration. Analytical Chemistry, 81(10), 4005–4009. https://doi.org/10.1021/ac900419c
  • Shreder, K., Harriman, A., & Iverson, B. L. (1996). Molecular recognition of a monoclonal antibody (AC1106) cross-reactive for derivatives of Ru(bpy)32+ and Ru(phen)32+. Journal of the American Chemical Society, 118(13), 3192–3201. https://doi.org/10.1021/ja952014o
  • Shu, Q., Liu, M. L., Ouyang, H., & Fu, Z. F. (2017). Label-free fluorescent immunoassay for Cu2+ ion detection based on UV degradation of immunocomplex and metal ion chelates. Nanoscale, 9(34), 12302–12306. https://doi.org/10.1039/C7NR04087C
  • Spang, P., Herrmann, C., & Roesch, F. (2016). Bifunctional gallium-68 chelators: Past, present, and future. Seminars in Nuclear Medicine, 46(5), 373–394. https://doi.org/10.1053/j.semnuclmed.2016.04.003
  • Stickney, D. R., Anderson, L. D., Slater, J. B., Ahlem, C. N., Kirk, G. A., Schweighardt, S. A., & Frincke, J. M. (1991). Bifunctional antibody - a binary radiopharmaceutical delivery system for imaging colorectal-carcinoma. Cancer Research, 51(24), 6650–6655.
  • Sun, H. B., Wang, M. M., Wang, J. L., Tian, M., Wang, H., Sun, Z. W., & Huang, P. L. (2015). Development of magnetic separation and quantum dots labeled immunoassay for the detection of mercury in biological samples. Journal of Trace Elements in Medicine and Biology, 30, 37–42. https://doi.org/10.1016/j.jtemb.2015.01.009
  • Tang, Y., Zhai, Y. F., Xiang, J. J., Wang, H., Liu, B., & Guo, C. W. (2010). Colloidal gold probe-based immunochromatographic assay for the rapid detection of lead ions in water samples. Environmental Pollution, 158(6), 2074–2077. https://doi.org/10.1016/j.envpol.2010.03.001
  • Tighe, P. J., Ryder, R. R., Todd, I., & Fairclough, L. C. (2015). ELISA in the multiplex era: Potentials and pitfalls. Proteomics Clinical Applications, 9(3–4), 406–422. https://doi.org/10.1002/prca.201400130
  • Velanki, S., Kelly, S., Thundat, T., Blake, D. A., & Ji, H. F. (2007). Detection of Cd(II) using antibody-modified microcantilever sensors. Ultramicroscopy, 107(12), 1123–1128. https://doi.org/10.1016/j.ultramic.2007.01.011
  • Verhoeven, M., Seimbille, Y., & Dalm, S. U. (2019). Therapeutic applications of pretargeting. Pharmaceutics, 11(9), 9. https://doi.org/10.3390/pharmaceutics11090434
  • Wang, Y. L., Li, Z. F., Barnych, B., Huo, J. Q., Wan, D. B., Vasylieva, N., Xu, J. L., Li, P., Liu, B. B., Zhang, C. Z., & Hammock, B. D. (2019). Investigation of the small size of nanobodies for a sensitive fluorescence polarization immunoassay for small molecules: 3-phenoxybenzoic acid, an exposure biomarker of pyrethroid insecticides as a model. Journal of Agricultural and Food Chemistry, 67(41), 11536–11541.
  • Wang, Y. L., Wang, L. M., Wang, S. Y., Yang, M. M., Cai, J., & Liu, F. Q. (2016). ‘Green’ immunochromatographic electrochemical biosensor for mercury(II). Microchimica Acta, 183(9), 2509–2516.
  • Wang, Y., Yang, H., Pschenitza, M., Niessner, R., Li, Y., Knopp, D., & Deng, A. (2012). Highly sensitive and specific determination of mercury(II) ion in water, food and cosmetic samples with an ELISA based on a novel monoclonal antibody. Analytical and Bioanalytical Chemistry, 403(9), 2519–2528.
  • Wangler, B., Schirrmacher, R., Bartenstein, P., & Wangler, C. (2011). Chelating agents and their use in radiopharmaceutical sciences. Mini-Reviews in Medicinal Chemistry, 11(11), 968–983.
  • Westhoff, C. M., Lopez, O., Goebel, P., Carlson, L., Carlson, R. R., Wagner, F. W., Schuster, S. M., & Wylie, D. E. (1999). Unusual amino acid usage in the variable regions of mercury-binding antibodies. Proteins, 37(3), 429–440. https://doi.org/10.1002/(SICI)1097-0134(19991115)37:3<429::AID-PROT10>3.0.CO;2-P
  • Wylie, D. E., Lu, D., Carlson, L. D., Carlson, R., Babacan, K. F., Schuster, S. M., & Wagner, F. W. (1992). Monoclonal-antibodies specific for mercuric ions. Proceedings of the National Academy of Sciences of the United States of America, 89(9), 4104–4108. https://doi.org/10.1073/pnas.89.9.4104
  • Xi, T., Zhan, X. J., Xing, H. B., Cao, C. X., & Zhou, P. (2015). Synthesis and characterization of artificial antigens for copper and application for development of an indirect competitive enzyme-linked immunosorbent assay. Analytical Letters, 48(9), 1411–1425. https://doi.org/10.1080/00032719.2014.984192
  • Xiao, M., Fu, Q. Q., Shen, H. C., Chen, Y., Xiao, W., Yan, D. G., Tang, X. J., Zhong, Z. Y., & Tang, Y. (2018). A turn-on competitive immunochromatographic strips integrated with quantum dots and gold nano-stars for cadmium ion detection. Talanta, 178, 644–649. https://doi.org/10.1016/j.talanta.2017.10.002
  • Xing, C. R., Feng, M., Hao, C. L., Xu, L. G., Kuang, H., Wang, L. B., & Xu, C. L. (2013). Visual sensor for the detection of trace Cu(II) ions using an immunochromatographic strip. Immunological Investigations, 42(3), 221–234. https://doi.org/10.3109/08820139.2012.752378
  • Xing, C. R., Liu, L. Q., Zhang, X., Kuang, H., & Xu, C. L. (2014). Colorimetric detection of mercury based on a strip sensor. Analytical Methods, 6(16), 6247–6253. https://doi.org/10.1039/C3AY42002G
  • Xu, M. X., Chen, M. T., Dong, T. T., Zhao, K., Deng, A. P., & Li, J. G. (2015). Flow injection chemiluminescence immunoassay based on resin beads, enzymatic amplification and a novel monoclonal antibody for determination of Hg2+. The Analyst, 140(18), 6373–6378. https://doi.org/10.1039/C5AN01131K
  • Xu, W., Xie, P., Fan, L. Y., Cao, C. X., Xi, T., & Zhou, P. (2011). Synthesis and characteristics of a novel artificial hapten using the copper mercaptide of penicillenic acid from penicillin G for immunoassay of heavy metal ions. Science China-Life Sciences, 54(9), 813–821. https://doi.org/10.1007/s11427-011-4220-8
  • Yamaguchi, H., Hirano, T., Kiminami, H., Taura, D., & Harada, A. (2006). Asymmetric hydrogenation with antibody-achiral rhodium complex. Organic & Biomolecular Chemistry, 4(19), 3571–3573. https://doi.org/10.1039/b609242j
  • Yang, J., & Merritt, K. (1994). Detection of antibodies against corrosion products in patient after Co-Cr total joint replacements. Journal of Biomedical Materials Research, 28(11), 1249–1258. https://doi.org/10.1002/jbm.820281102
  • Yang, J., & Merritt, K. (1996). Production of monoclonal antibodies to study corrosion products of Co-Cr biomaterials. Journal of Biomedical Materials Research, 31(1), 71–80.
  • Zhan, X. J., Xi, T., & Zhou, P. (2015). Preparation of a polyclonal antibody against the cadmium-DTPA complex and its application for determination of cadmium. Food and Agricultural Immunology, 26(6), 794–803.
  • Zhang, Y., Li, X. B., Liu, G. W., Wang, Z., Kong, T., Tang, J. J., Zhag, P., Yang, W., Li, D. N., Liu, L., Xie, G. H., & Wang, J. G. (2011). Development of ELISA for detection of mercury based on specific monoclonal antibodies against mercury-chelate. Biological Trace Element Research, 144(1–3), 854–864.
  • Zhang, J., Wang, M. B., Yao, X., Deng, A. P., & Li, J. G. (2015). Highly sensitive electroluminescence immunoassay for Hg(II) ions based on the use of CdSe quantum dots, the methylmercury-6-mercaptonicotinic acid-ovalbumin conjugate, and a specific monoclonal antibody. Microchimica Acta, 182(3-4), 469–477.
  • Zhou, Y., Tian, X. L., Li, Y. S., Zhang, Y. Y., Yang, L., Zhang, J. H., Wang, X. R., Lu, S. Y., Ren, H. L., & Liu, Z. S. (2011). A versatile and highly sensitive probe for Hg(II), Pb(II) and Cd(II) detection individually and totally in water samples. Biosensors & Bioelectronics, 30(1), 310–314. https://doi.org/10.1016/j.bios.2011.08.034
  • Zhu, X. X., Hu, B. S., Lou, Y., Xu, L. N., Yang, F. L., Yu, H. N., Blake, D. A., & Liu, F. Q. (2007). Characterization of monoclonal antibodies for lead-chelate complexes: Applications in antibody-based assays. Journal of Agricultural and Food Chemistry, 55(13), 4993–4998. https://doi.org/10.1021/jf070787d
  • Zhu, X. X., Miao, X. Y., Qin, X. Y., & Zhu, X. H. (2019). Design of immunogens: The effect of bifunctional chelator on immunological response to chelated copper. Journal of Pharmaceutical and Biomedical Analysis, 174, 263–269. https://doi.org/10.1016/j.jpba.2019.06.001