1,888
Views
1
CrossRef citations to date
0
Altmetric
Articles

Holly polyphenols attenuate liver injury, suppression inflammation and oxidative stress in lipopolysaccharide-challenged weaned pigs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 35-46 | Received 21 Oct 2021, Accepted 20 Dec 2021, Published online: 20 Jan 2022

References

  • Bailey, S. M., & Cunningham, C. C. (2002). Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radical Biology and Medicine, 32(1), 11–16. https://doi.org/10.1016/S0891-5849(01)00769-9
  • Cho, H. I., Park, J. H., Choi, H. S., Kwak, J. H., Lee, D. U., Lee, S. K., & Lee, S. M. (2014). Protective mechanisms of acacetin against D-glactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. Journal of Natural Products, 77(11), 2497–2503. https://doi.org/10.1021/np500537x
  • Covert, M. W., Leung, T. H., Gaston, J. E., & Baltimore, D. (2005). Achieving stability of lipopolysaccharide-induced NF-kappa B activation. Science, 309(5742), 1854–1857. https://doi.org/10.1126/science.1112304
  • Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316–328. https://doi.org/10.1016/j.numecd.2005.05.003
  • Domitrovic, R., & Potocnjak, I. (2016). A comprehensive overview of hepatoprotective natural compounds: Mechanism of action and clinical perspectives. Archives of Toxicology, 90(1), 39–79. https://doi.org/10.1007/s00204-015-1580-z
  • Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion-from mechanism to translation. Nature Medicine, 17(11), 1391–1401. https://doi.org/10.1038/nm.2507
  • Kawai, T., & Akira, S. (2006). TLR signaling. Cell Death and Differentiation, 13(5), 816–825. https://doi.org/10.1038/sj.cdd.4401850
  • Klune, J. R., & Tsung, A. (2010). Molecular biology of liver ischemia/reperfusion injury: Established mechanisms and recent advancements. Surgical Clinics of North America, 90(4), 665–677. https://doi.org/10.1016/j.suc.2010.04.003
  • Lama, A., Pirozzi, C., Mollica, M. P., Trinchese, G., Guida, F. D., Cavaliere, G., Calignano, A., Raso, G. M., Canani, R. B., & Meli, R. (2017). Polyphenol-rich virgin olive oil reduces insulin resistance and liver inflammation and improves mitochondrial dysfunction in high-fat diet fed rats. Molecular Nutrition & Food Research, 61(3), 3. https://doi.org/10.1002/mnfr.201600418
  • Li, A. N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M., & Li, H. B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020–6047. https://doi.org/10.3390/nu6126020
  • Li, F. F., Huang, D. F., Nie, S. P., & Xie, M. Y. (2019). Polysaccharide from the seed of plantago asiatica L. protect against lipopolysaccharide-induced liver injury. Journal of Medicinal Food, 22(10), 1058–1066. https://doi.org/10.1089/jmf.2018.4394
  • Li, S., Tan, H. Y., Wang, N., Cheung, F., Hong, M., & Feng, Y. (2018). The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/8394818
  • Liu, J., Wang, Y., & Ouyang, X. (2014). Beyond toll-like receptors: Porphyromonas gingivalis induces IL-6, IL-8, and VCAM-1 expression through NOD-mediated NF-kB and ERK signaling pathways in periodontal fibroblasts. Inflammation, 37(2), 522–533. https://doi.org/10.1007/s10753-013-9766-0
  • Liu, Y. L., Chen, F., Odle, J., Lin, X., Jacobi, S. K., Zhu, H. L., Wu, Z. F., & Hou, Y. Q. (2012). Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathway in weaned pigs after LPS challenge. The Journal of Nutrition, 142(11), 2017–2024. https://doi.org/10.3945/jn.112.164947
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Manach, C., Scalbert, A., Morand, C., Remesy, C., & Jimenez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
  • Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415), 231–241. https://doi.org/10.1038/nature11551
  • Mohebbati, R., Anaeigoudari, A., & Khazdair, M. R. (2017). The effects of Curcuma longa and curcumin on reproductive systems. Endocrine Regulations, 51(4), 220–228. https://doi.org/10.1515/enr-2017-0024
  • Olga, U., Olga, V., Jarmila, K., Pavol, J., & Iveta, W. (2019). Rooibos tea (Aspalathus linearis) ameliorates the CCl4-induced injury to mitochondrial respiratory function and energy production in rat liver. General Physiology and Biophysics, 38(1), 15–25. https://doi.org/10.4149/gpb_2018037
  • Radnai, B., Tucsek, Z., Bognar, Z., Antus, C., Mark, L., Berente, Z., GallyasJr.F., Sumegi, B., & Veres, B. (2009). Ferulaldehyde, a water-soluble degradation product of polyphenols, inhibits the lipopolysaccharide-induced inflammatory response in mice. The Journal of Nutrition, 139(2), 291–297. https://doi.org/10.3945/jn.108.097386
  • Ranneh, Y., Ali, F., Akim, A. M., Hamid, H. A., Khazaai, H., & Fadel, A. (2017). Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases a review. Applied Biological Chemistry, 60(3), 327–338. https://doi.org/10.1007/s13765-017-0285-9
  • Reyes-Gordillo, K., Shah, R., & Muriel, P. (2017). Oxidative stress and inflammation in hepatic diseases: Current and future therapy. Oxidative Medicine and Cellular Longevity, 2017, Article 3140673. https://doi.org/10.1155/2017/3140673
  • Sai, G. U. (2006). Establishment of experimental model of chronic alcoholic fatty liver in rats. Journal of Chongqing Medical University, 31, 80–84. https://doi.org/10.1038/0253-3626(2006)01-0081-04.
  • Strnad, P., Tacke, F., Koch, A., & Trautwein, C. (2017). Liver-guardiam, modifier and target of sepsis. Nature Review Gastroenterology & Hepatology, 14(1), 55–66. https://doi.org/10.1038/nrgastro.2016.168
  • Su, Z. Q., Mo, Z. A., Liao, J. B., Feng, X. X., Liang, Y. Z., Zhang, X., Liu, Y. H., Chen, X. Y., Chen, Z. W., Su, Z. R., & Lai, X. P. (2014). Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress. International Immunopharmacology, 22(2), 371–378. https://doi.org/10.1016/j.intimp.2014.06.043
  • Wan, J. Y., Gong, X., Zhang, L., Li, H. Z., Zhou, Y. F., & Zhou, Q. X. (2008). Protective effect of baicalin against lipopolysaccharide/D-galactosamine-induced liver injury in mice by up-regulation of heme oxygenase-1. European Journal of Pharmacology, 587(1-3), 302–308. https://doi.org/10.1016/j.ejphar.2008.02.081
  • Wang, D. X., Zhang, M., Wang, T. T., Cai, M., Qian, F., Sun, Y., & Wang, Y. J. (2019). Green tea polyphenols prevent lipopolysaccharide-induced inflammatory liver injury in mice by inhibiting NLRP3 inflammasome activation. Food & Function, 10(7), 3898–3908. https://doi.org/10.1039/C9FO00572B
  • Wang, X., Han, C., Qin, J. J., Wei, Y. Y., Qian, X. F., Bao, Y. Z., & Shi, W. Y. (2019). Pretreatment with Salvia miltiorrhiza polysaccharides protects from lipopolysaccharides/D-galactosamine-induced liver injury in mice through inhibiting TLR4/MyD88 signaling pathway. Journal of Interferon and Cytokine Research, 39(8), 495–505. https://doi.org/10.1089/jir.2018.0137
  • Xia, X. M., Su, C. Y., Fu, J. L., Zhang, P., Jiang, X. J., Xu, D. M., Hu, L. H., & Song, Y. (2014). Role of α-lipoic acid in LPS/D-GalN induced fulminant hepatic failure in mice: Studies on oxidative stress, inflammation and apoptosis. International Immunopharmacology, 22, 93–302. https://doi.org/10.1016/j.intimp.2014.07.008.
  • Xu, M. C., Rui, D. S., Yan, Y. Z., Xu, S. Z., Niu, Q., Feng, G. L., Wang, Y., Li, S. G., & Jing, M. X. (2017). Oxidative damage induced by arsenic in mice or rats: A systematic review and meta-analysis. Biological Trace Element Research, 176(1), 154–175. https://doi.org/10.1007/s12011-016-0810-4
  • Xu, X., Hua, H. W., Wang, L. M., He, P. W., Zhang, L., Qin, Q., Yu, C., Wang, X. Y., Zhang, G. L., & Liu, Y. L. (2020). Holly polyphenols alleviate intestinal inflammation and alter microbiota composition in lipopolysaccharide-challenged pigs. British Journal of Nutrition, 123(8), 881–891. https://doi.org/10.1017/S0007114520000082
  • Xu, X. J., Chen, X. L., Huang, Z. Q., Chen, D. W., Yu, B., Chen, H., He, J., Luo, Y. H., Zheng, J., & Luo, J. Q. (2019). Dietary apple polyphenols supplementation enhances antioxidant capacity and improves lipid metabolism in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 103(5), 1512–1520. https://doi.org/10.1111/jpn.13152
  • Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618
  • Yang, S. Q., Lin, H. Z., Lane, M. D., Clemens, M., & Diehl, A. M. (1997). Obesity increases sensitivity to endotoxin liver injury: Implications for the pathogenesis of steatohepatitis. Proceedings of the National Academy of Sciences of the United States of America, 94(6), 2557–2562. https://doi.org/10.1073/pnas.94.6.2557