1,604
Views
0
CrossRef citations to date
0
Altmetric
Articles

Luteolin attenuates PM2.5-induced inflammatory responses by augmenting HO-1 and JAK-STAT expression in murine alveolar macrophages

, , , , , , , , & show all
Pages 47-64 | Received 18 Nov 2021, Accepted 21 Dec 2021, Published online: 04 Feb 2022

References

  • Albarakati, A. J. A., Baty, R. S., Aljoudi, A. M., Habotta, O. A., Elmahallawy, E. K., Kassab, R. B., & Abdel Moneim, A. E. (2020). Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Molecular Biology Reports, 47(4), 2591–2603. https://doi.org/10.1007/s11033-020-05346-1
  • Boengler, K., Hilfikerkleiner, D., Drexler, H., Heusch, G., & Schulz, R. (2008). The myocardial JAK/STAT pathway: From protection to failure. Pharmacology & Therapeutics, 120(2), 172–185. https://doi.org/10.1016/j.pharmthera.2008.08.002
  • Bustos, P. S., Deza-Ponzio, R., Páez, P. L., Cabrera, J. L., Virgolini, M. B., & Ortega, M. G. (2018). Flavonoids as protective agents against oxidative stress induced by gentamicin in systemic circulation. Potent protective activity and microbial synergism of luteolin. Food and Chemical Toxicology, 118, 294–302. https://doi.org/10.1016/j.fct.2018.05.030
  • Chenxu, G., Minxuan, X., Yuting, Q., Tingting, G., Jinxiao, L., Mingxing, W., Sujun, W., Yongjie, M., Deshuai, L., Qiang, L., Linfeng, H., & Jun, T. (2018). Irhom2 loss alleviates renal injury in long-term PM2.5-exposed mice by suppression of inflammation and oxidative stress. Redox Biology, 19, 147–157. https://doi.org/10.1016/j.redox.2018.08.009
  • Cheon, H., Yang, J., & Stark, G. R. (2011). The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins. Journal of Interferon & Cytokine Research, 31(1), 33–40. https://doi.org/10.1089/jir.2010.0100
  • Choi, J. H., Jin, S. W., Han, E. H., Park, B. H., Kim, H. G., Khanal, T., Hwang, Y. P., Do, M. T., Lee, H. S., Chung, Y. C., Kim H. S., Jeong, T. C., & Jeong, H. (2014). Platycodon grandiflorum root-derived saponins attenuate atopic dermatitis-like skin lesions via suppression of NF-κB and STAT1 and activation of Nrf2/ARE-mediated heme oxygenase-1. Phytomedicine, 21(8-9), 1053–1061. https://doi.org/10.1016/j.phymed.2014.04.011
  • Chowdhury, P. H., Okano, H., Honda, A., Kudou, H., Kitamura, G., Ito, S., Ueda, K., & Takano, H. (2018). Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems. Environmental Pollution, 235, 223–234. https://doi.org/10.1016/j.envpol.2017.12.040
  • Coleman, N. C., Burnett, R. T., Higbee, J. D., Lefler, J. S., Merrill, R. M., Ezzati, M., Marshall, J. D., Kim, S. Y., Bechle, M., Robinson, A. L., & Pope, C. A. (2020). Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US adults. Cancer Causes & Control, 31(8), 767–776. https://doi.org/10.1007/s10552-020-01317-w
  • Drummond, R. A., & Lionakis, M. S. (2019). Organ-specific mechanisms linking innate and adaptive antifungal immunity. Seminars in Cell & Developmental Biology, 89, 78–90. https://doi.org/10.1016/j.semcdb.2018.01.008
  • Facchinetti, M. M. (2020). Heme-oxygenase-1. Antioxidants & Redox Signaling, 32(17), 1239–1242. https://doi.org/10.1089/ars.2020.8065
  • Geeraerts, X., Bolli, E., Fendt, S. M., & Van Ginderachter, J. A. (2017). Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Frontiers in Immunology, 8, 289. https://doi.org/10.3389/fimmu.2017.00289
  • Gökbulut, A., Orhan, N., & Deliorman Orhan, D. (2017). Phenolic compounds characterization, carbohydrate digestive enzyme inhibitory and antioxidant activities of Hieracium pannosum boiss. South African Journal of Botany, 108, 387–392. https://doi.org/10.1016/j.sajb.2016.08.021
  • Hammaker, D., Nygaard, G., Kuhs, A., Ai, R., Boyle, D. L., Wang, W., & Firestein, G. S. (2019). Joint location-specific JAK-STAT Signaling in rheumatoid arthritis fibroblast-like synoviocytes. ACR Open Rheumatology, 1(10), 640–648. https://doi.org/10.1002/acr2.11093
  • Honda, A., Okuda, T., Nagao, M., Miyasaka, N., Tanaka, M., & Takano, H. (2021). PM2.5 collected using cyclonic separation causes stronger biological responses than that collected using a conventional filtration method. Environmental Research, 198, 110490. https://doi.org/10.1016/j.envres.2020.110490
  • Huang, Q., Zhang, J., Peng, S., Tian, M., Chen, J., & Shen, H. (2014). Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): A proteomic study. Journal of Applied Toxicology, 34(6), 675–687. https://doi.org/10.1002/jat.2910
  • Huang, X., Shi, X., Zhou, J., Li, S., Zhang, L., Zhao, H., Kuang, X., & Li, J. (2020). The activation of antioxidant and apoptosis pathways involved in damage of human proximal tubule epithelial cells by PM2.5 exposure. Environmental Sciences Europe, 32(1), 2. https://doi.org/10.1186/s12302-019-0284-z
  • Hvidtfeldt, U. A., Geels, C., Sørensen, M., Ketzel, M., Khan, J., Tjønneland, A., Christensen, J. H., Brandt, J., & Raaschou-Nielsen, O. (2019). Long-term residential exposure to PM2.5 constituents and mortality in a danish cohort. Environment International, 133, 105268. https://doi.org/10.1016/j.envint.2019.105268
  • Imran, M., Rauf, A., Abu-Izneid, T., Nadeem, M., Shariati, M. A., Khan, I. A., Imran, A., Orhan, I. E., Rizwan, M., Atif, M., Gondal, T. A., & Mubarak, M. S. (2019). Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy, 112, 108612. https://doi.org/10.1016/j.biopha.2019.108612
  • Jia, H., Liu, Y., Guo, D., He, W., Zhao, L., & Xia, S. (2021). PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. Environmental Toxicology, 36(3), 298–307. https://doi.org/10.1002/tox.23035
  • Joshi, N., Walter, J. M., & Misharin, A. V. (2018). Alveolar macrophages. Cellular Immunology, 330, 86–90. https://doi.org/10.1016/j.cellimm.2018.01.005
  • Kamali, M., Khosroyar, S., Kamali, H., Ahmadzadeh Sani, T., & Mohammadi, A. (2016). Phytochemical screening and evaluation of antioxidant activities of Dracocephalum kotschyi and determination of its luteolin content. Avicenna Journal of Phytomedicine, 6(4), 425–433.
  • Khalili, R., Bartell, S. M., Hu, X., Liu, Y., Chang, H. H., Belanoff, C., Strickland, M. J., & Vieira, V. M. (2018). Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in massachusetts: A case-crossover analysis. Environmental Health, 17(1), 20. https://doi.org/10.1186/s12940-018-0361-6
  • Kim, S. H., Park, S. Y., Park, Y. L., Myung, D. S., Rew, J. S., & Joo, Y. E. (2017). Chlorogenic acid suppresses lipopolysaccharide-induced nitric oxide and interleukin-1β expression by inhibiting JAK2/STAT3 activation in RAW264.7 cells. Molecular Medicine Reports, 16(6), 9224–9232. https://doi.org/10.3892/mmr.2017.7686
  • Kuo, C.-Y., Wang, J.-Y., Chang, S.-H., & Chen, M.-C. J. A. E. (2009). Study of metal concentrations in the environment near diesel transport routes. Atmospheric Environment, 43(19), 3070–3076. https://doi.org/10.1016/j.atmosenv.2009.03.028
  • Li, Y., Kakkar, R., & Wang, J. (2018). In vivo and in vitro approach to anti-arthritic and anti-inflammatory effect of crocetin by alteration of Nuclear factor-E2-related factor 2/hem oxygenase (HO)-1 and NF-κB expression. Frontiers in Pharmacology, 9, 1341. https://doi.org/10.3389/fphar.2018.01341
  • Li, Y. Z., Chen, J. H., Tsai, C. F., & Yeh, W. L. (2019). Anti-inflammatory property of imperatorin on alveolar macrophages and inflammatory lung injury. Journal of Natural Products, 82(4), 1002–1008. https://doi.org/10.1021/acs.jnatprod.9b00145
  • Li, Z., Wu, Y., Chen, H. P., Zhu, C., Dong, L., Wang, Y., Liu, H., Xu, X., Zhou, J., Wu, Y., Li, W., Ying, S., Shen, H., Chen, Z.-H. (2018). MTOR suppresses Environmental particle-induced inflammatory response in macrophages. The Journal of Immunology, 200(8), 2826–2834. https://doi.org/10.4049/jimmunol.1701471
  • Lim, J. W., Kim, H., & Kim, K. H. (2001). Nuclear Factor-κB regulates cyclooxygenase-2 expression and cell proliferation in human gastric Cancer cells. Laboratory Investigation, 81(3), 349–360. https://doi.org/10.1038/labinvest.3780243
  • Liu, C., Arnold, R., Henriques, G., & Djabali, K. (2019). Inhibition of JAK-STAT signaling with baricitinib reduces inflammation and improves cellular homeostasis in progeria cells. Cells, 8(10), 1276. https://doi.org/10.3390/cells8101276
  • Liu, C. W., Lin, H. W., Yang, D. J., Chen, S. Y., Tseng, J. K., Chang, T. J., & Chang, Y. Y. (2016). Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-kappaB and activation of HO-1. Free Radical Biology and Medicine, 95, 180–189. https://doi.org/10.1016/j.freeradbiomed.2016.03.019
  • Lu, X., Li, R., & Yan, X. (2021). Airway hyperresponsiveness development and the toxicity of PM2.5. Environmental Science and Pollution Research, 28(6), 6374–6391. https://doi.org/10.1007/s11356-020-12051-w
  • Ma, Q. Y., Huang, D. Y., Zhang, H. J., Wang, S., & Chen, X. F. (2017). Exposure to particulate matter 2.5 (PM2.5) induced macrophage-dependent inflammation, characterized by increased Th1/Th17 cytokine secretion and cytotoxicity. International Immunopharmacology, 50, 139–145. https://doi.org/10.1016/j.intimp.2017.06.019
  • Naito, Y., Takagi, T., & Higashimura, Y. (2014). Heme oxygenase-1 and anti-inflammatory M2 macrophages. Archives of Biochemistry and Biophysics, 564, 83–88. https://doi.org/10.1016/j.abb.2014.09.005
  • Niu, B. Y., Li, W. K., Li, J. S., Hong, Q. H., Khodahemmati, S., Gao, J. F., & Zhou, Z. X. (2020). Effects of DNA damage and oxidative stress in human bronchial epithelial cells exposed to PM2.5 from Beijing, China, in winter. International Journal of Environmental Research and Public Health, 17(13), 4874. https://doi.org/10.3390/ijerph17134874
  • Okugawa, S., Ota, Y., Kitazawa, T., Nakayama, K., Yanagimoto, S., Tsukada, K., Kawada, M., & Kimura, S. (2003). Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. American Journal of Physiology-Cell Physiology, 285(2), C399–C408. https://doi.org/10.1152/ajpcell.00026.2003
  • Ostareck, D. H., & Ostareck-Lederer, A. (2019). RNA-Binding Proteins in the control of LPS-induced macrophage response. Frontiers in Genetics, 10, 31. https://doi.org/10.3389/fgene.2019.00031
  • Park, C. M., Jin, K. S., Lee, Y. W., & Song, Y. S. (2011). Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells. European Journal of Pharmacology, 660(2-3), 454–459. https://doi.org/10.1016/j.ejphar.2011.04.007
  • Ribeiro, J. P., Kalb, A. C., Campos, P. P., Cruz, A. R. H., Martinez, P. E., Gioda, A., Souza, M. M., & Gioda, C. R. (2016). Toxicological effects of particulate matter (PM2.5) on rats: Bioaccumulation, antioxidant alterations, lipid damage, and ABC transporter activity. Chemosphere, 163, 569–577. https://doi.org/10.1016/j.chemosphere.2016.07.094
  • Shoenfelt, J., Mitkus, R. J., Zeisler, R., Spatz, R. O., Powell, J., Fenton, M. J., Squibb, K. A., & Medvedev, A. E. (2009). Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. Journal of Leukocyte Biology, 86(2), 303–312. https://doi.org/10.1189/jlb.1008587
  • Shukla, A., Timblin, C., BeruBe, K., Gordon, T., McKinney, W., Driscoll, K., Vacek, P., & Mossman, B. T. (2000). Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB-related genes and oxidant-dependent NF-kappaB activation in vitro. American Journal of Respiratory Cell and Molecular Biology, 23(2), 182–187. https://doi.org/10.1165/ajrcmb.23.2.4035
  • Song, Y. S., & Park, C. M. (2014). Luteolin and luteolin-7-O-glucoside strengthen antioxidative potential through the modulation of Nrf2/MAPK mediated HO-1 signaling cascade in RAW 264.7 cells. Food and Chemical Toxicology, 65, 70–75. https://doi.org/10.1016/j.fct.2013.12.017
  • Sung, J., & Lee, J. (2015). Anti-Inflammatory activity of butein and luteolin through suppression of NFkappaB activation and induction of Heme oxygenase-1. Journal of Medicinal Food, 18(5), 557–564. https://doi.org/10.1089/jmf.2014.3262
  • Wang, B., Chen, H., Xenaki, D., Liao, J., Cowie, C., & Oliver, B. G. (2021). Differential inflammatory and toxic effects in-vitro of wood smoke and traffic-related particulate matter from sydney, Australia. Chemosphere, 272, 129616. https://doi.org/10.1016/j.chemosphere.2021.129616
  • Wang, F., Liang, Q., Sun, M., Ma, Y., Lin, L., Li, T., Duan, J., & Sun, Z. (2020). The relationship between exposure to PM2.5 and heart rate variability in older adults: A systematic review and meta-analysis. Chemosphere, 261, 127635. https://doi.org/10.1016/j.chemosphere.2020.127635
  • World Health Organization. (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.
  • Wu, W., Li, D., Zong, Y., Zhu, H., Pan, D., Xu, T., Wang, T., & Wang, T. (2013). Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules, 18(7), 8083–8094. https://doi.org/10.3390/molecules18078083
  • Xu, Z., Wu, H., Zhang, H., Bai, J., & Zhang, Z. (2020). Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. Journal of Applied Toxicology, 40(9), 1210–1218. https://doi.org/10.1002/jat.3977
  • Yang, L., Li, C., & Tang, X. (2020). The impact of PM2.5 on the host defense of respiratory system. Frontiers in Cell and Developmental Biology, 8, 91. https://doi.org/10.3389/fcell.2020.00091
  • Zhang, B. C., Li, Z., Xu, W., Xiang, C. H., & Ma, Y. F. (2018). Luteolin alleviates NLRP3 inflammasome activation and directs macrophage polarization in lipopolysaccharide-stimulated RAW264.7 cells. American Journal of Translational Research, 10(1), 265–273.
  • Zhang, W., Jiang, P., Chen, J., Zhu, C., Mao, Z., & Gao, C. (2017). Application of melatonin-loaded poly(N-isopropylacrylamide) hydrogel particles to reduce the toxicity of airborne pollutes to RAW264.7 cells. Journal of Colloid and Interface Science, 490, 181–189. https://doi.org/10.1016/j.jcis.2016.11.075
  • Zhang, Y., Ji, X., Ku, T., & Sang, N. (2016). Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO2. NO2, and PM2.5. Environmental Toxicology, 31(12), 1996–2005. https://doi.org/10.1002/tox.22200
  • Zhao, C., Liao, J., Chu, W., Wang, S., Yang, T., Tao, Y., & Wang, G. (2012). Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhalation Toxicology, 24(13), 918–927. https://doi.org/10.3109/08958378.2012.731093
  • Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X., & Lu, D. (2014). Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-kappaB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Experimental and Therapeutic Medicine, 7(5), 1065–1070. https://doi.org/10.3892/etm.2014.1564
  • Zou, Y., Jin, C., Su, Y., Li, J., & Zhu, B. (2016). Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. Environmental Pollution, 212, 627–635. https://doi.org/10.1016/j.envpol.2016.03.022