870
Views
2
CrossRef citations to date
0
Altmetric
Articles

A highly salt-tolerant monoclonal antibody-based enzyme-linked immunosorbent assay for the rapid detection of phenylethanolamine A in urine

, , , , , & show all
Pages 575-587 | Received 20 May 2022, Accepted 25 May 2022, Published online: 29 Jul 2022

References

  • Bai, Y. C., Jiang, H., Zhang, Y., Dou, L., Liu, M., Yu, W., Wen, K., Shen, J., Ke, Y., Yu, X., Wang, Z. (2021a). Hydrophobic moiety of capsaicinoids haptens enhancing antibody performance in immunoassay: Evidence from computational chemistry and molecular recognition. Journal of Agricultural and Food Chemistry, 69(34), 9957–9967. doi:10.1021/acs.jafc.1c03657
  • Bai, Y. C., Wang, Y. H., Li, Q., Dou, L., Liu, M., Shao, S., Zhu, J., Shen, J., Wang, Z., Wen, K., Yu, W. (2021b). Binding affinity–guided design of a highly sensitive noncompetitive immunoassay for small molecule detection. Food Chemistry, 351, 129270. doi:10.1016/j.foodchem.2021.129270.
  • Bai, Y. H., Liu, Z. H., Bi, Y. F., Wang, X., Jin, Y. Z., Sun, L., & Xu, S. X. (2012). Preparation of polyclonal antibodies and development of a direct competitive enzyme-linked immunosorbent assay to detect residues of phenylethanolamine A in urine samples. Journal of Agricultural and Food Chemistry, 60(46), 11618–11624. doi:10.1021/jf3036066
  • Cao, B., Guangzhao, H., Hong , Y., Huafang, C., Shuqun , L., & Anping, D. (2013). Development of a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for the detection of phenylethanolamine A in tissue and feed samples and confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Talanta, 115, 624–630. doi:10.1016/j.talanta.2013.06.026
  • Dai, M. Y., Gong, Y. F., Liu, A., Zhang, L. L., Lin, J. X., Zhang, M. Z., & Yu, X. P. (2015). Development of a colloidal gold-based lateral-flow immunoassay for the rapid detection of phenylethanolamine A in swine urine. Analytical Methods, 7(10), 4130–4137. doi:10.1039/C5AY00641D
  • Gagnon, J. K., Law, S. M., & Brooks, C. L. (2014). Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. Journal of Computational Chemistry, 106(2), 753–762. doi:10.1002/jcc.24259.
  • Hu, Z. Q., Li, H. P., Liu, J. L., Xue, S., Gong, A. D., Zhang, J. B., Liao Y. C. (2016). Production of a phage-displayed mouse ScFv antibody against fumonisin B1 and molecular docking analysis of their interactions. Biotechnology and Bioprocess Engineering, 21(1), 134–143. doi:10.1007/s12257-015-0495-0
  • Jiang, D., Cao, B., Wang, M., Yang, H., Zhao, K., Li, J., Li, M., Sun, L., & Deng, A. (2016). Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay for the detection of a new β-agonist, phenylethanolamine A, in food samples. Journal of the Science of Food and Agriculture, 97(3), 1001–1009. doi: 10.1002/jsfa.7826.
  • Li, J., Chen, Y., Su, Y. Q., Ding, X. M., Xia, W. S., Liu, H. M., & Zhang, Y. B. (2017). Single-step multiresidue determination of β-lactam antibiotics and β-agonists in porcine muscle byliquid chromatography-tandem mass spectrometry. Food Analytical Methods, 10(7), 2185–2193. doi:10.1007/s12161-016-0738-5
  • Li, J. H., Li, C., Wu, M., Zhang, Y., Ma, X., Cheng, H., & Yan, J. H. (2015a). Development of an ultrasensitive immunochromatographic assay (ICA) strip for the rapid detection of phenylethanolamine A in urine and pork samples. Journal of Food Science, 80(4), T894–T899. doi:10.1111/1750-3841.12814
  • Li, X. M., Wang, W. J., Wang, L. M., Wang, Q., Pei, X. Y., & Jiang, H. Y. (2015b). Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay. Analytical and Bioanalytical Chemistry, 407(25), 7615–7624. doi:10.1007/s00216-015-8917-6
  • Li, Y., Lu, S., Liu, Z., Sun, L., Guo, J., Hu, P., Zhang, J., Zhang, Y, Wang, Y., Ren, H., Meng, X., Zhou, Y. (2015c). A monoclonal antibody based enzyme-linked immunosorbent assay for detection of phenylethanolamine A in tissue of swine. Food Chemistry, 167, 40–44. doi:10.1016/j.foodchem.2014.06.085
  • Li, Y., Ye, H. L., Liu, M., Song, S. Q., Chen, J., Cheng, W. K., Yan, L. P. (2021). Development and evaluation of a monoclonal antibody-based competitive ELISA for the detection of antibodies against H7 avian influenza virus. BMC Veterinary Research, 17(1), 64. doi:10.21203/rs.3.rs-36939/v2
  • Liu, J., Zhang, H. C., Duan, C. F., Dong, J., Zhao, G. X., Wang, J. P., Li, N., Liu, J. Z., Li Y. W. (2016). Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins. Journalof Environmental Scienceand Health, Part B, 51(11), 742–750. doi:10.1080/03601234.2016.1198639
  • Liu, Y., Cai, M., Wu, W., Fang, Y., She, P., Xu, S., & Bao, N. (2018). Multichannel electro-analytical devices for competitive ELISA of phenylethanolamine A. Biosensors & Bioelectronics, 99(2018), 21–27. doi:10.1016/j.bios.2017.04.002
  • Liu, Y. H., Guo, Y. R., Wang, C. M., Gui, W. J., & Zhu, G. N. (2010). Homology modeling of anti-parathion antibody and its interaction with organophosphorous pesticides and analogues. Journalof Environmental Scienceand Health, Part B, 45(8), 819–827. doi:10.1080/03601234.2010.515501
  • Mahalakshmi, N., Ravishankaran, R., Kamatchi, R., Sangith, N., Kaliraj, P., & Meenakshisundaram, S. (2019). Molecular evolution of single chain fragment variable (scFv) for diagnosis of lymphatic filariasis. Molecular Biology Reports, 46(5), 5409–5418. doi:10.1007/s11033-019-04995-1
  • Mari, G. M., Li, H. F., Dong, B. L., Yang, H. J., Mi, J. F., Guo, L. C., Yu, X. Z., Han, D. G., Wang Z. H. (2021). Hapten synthesis, monoclonal antibody production and immunoassay development for direct detection of 4-hydroxybenzehydrazide in chicken, the metabolite of nifuroxazide. Food Chemistry, (1-2), 355:129598. doi:10.1016/j.foodchem.2021.129598
  • Mei, L., Cao, B., Yang, H., Xie, Y., Xu, S., & Deng, A. (2014). Development of an immunoaffinity chromatography column for selective extraction of a new agonist phenylethylamine A from feed, meat and liver samples. Journal of Chromatography B, 945–946, 178–184. doi:10.1016/j.jchromb.2013.11.057
  • Min, W. K., Cho, Y. J., Park, J. B., Bae, Y. H., Kim, E. J., Park, K., Park, Y. C., Seo J. H. (2010). Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1. Biotechnology and Bioprocess Engineering, 33(1), 109–115. doi:10.1007/s00449-009-0350-9.
  • Pawar, S. S., & Rohane, S. H. (2021). Review on Discovery Studio: An important tool for molecular docking. Asian Journal of Research in. Chemistry, 14(1), 1–3. doi:10.5958/0974-4150.2021.00014.6
  • Sharma, S., Sharma, A., & Gupta, U. (2021). Molecular docking studies on the anti-fungal activity of allium sativum (garlic) against mucormycosis (black fungus) by BIOVIA Discovery Studio Visualizer 21.1. 0.0. Annals Antivirals and Antiretrovirals, 5(1), 028–032. doi:10.21203/rs.3.rs-888192/v1
  • Sofia, T., Linda, A., Mark, D., Gualberto, G., Dacid, K. (2019). Structure and specificity of several triclocarban-binding single domain camelid antibody fragments. Journal of Molecular Recognition, 32(1), e2755. doi:10.1002/jmr.2755
  • Tang, Q. H., Cai, F. D., Deng, A. P., & Li, J. G. (2015). Ultrasensitive competitive electrochemiluminescence immunoassay for the β-adrenergic agonist phenylethanolamine A using quantum dots and enzymatic amplification. Microchimica Acta, 182(1–2), 139–147. doi:10.1007/s00604-014-1292-8
  • Türker, F., Noma, S., Akta, A., Tok, T. T., Ates, B., Gök, Y. (2020). The (NHC)PdBr 2 (2-aminopyridine) complexes: Synthesis, characterization, molecular docking study, and inhibitor effects on the human serum carbonic anhydrase and serum bovine xanthine oxidase. Monatshefte für Chemie-Chemical Monthly, 151(10), 1557–1567. doi:10.1007/s00706-020-02687-2
  • Wang, L., Pu, R. C., Wang, X. X., Luo, C. Y., Zhang, L. C., Zhang X. S. (2015a). Multiresidue determination of β2-agonists including phenylethanolamine A in animal-derived food by ultra-high performance liquid chromatography/tandem mass spectrometry. Journal of Chromatographic Science, 53(6), 925–931. doi:10.1093/chromsci/bmu149
  • Wang, X. M., Liufu, T. L., Beloglazova, N. V., Luo, P. J., Qu, J. W., & Jiang, W. X. (2016). Development of a competitive indirect enzyme-linked immunosorbent assay for screening phenylethanolamine A residues in pork samples. Food Analytical Methods, 9(11), 3099–3106. doi:10.1007/s12161-016-0500-z
  • Wang, Z. H., Mi, T., Beier, R. C., Zhang, H., Sheng, Y., Shi, W., Zhang, S., & Shen, J. (2015b). Hapten synthesis, monoclonal antibody production and development of a competitive indirect enzyme–linked immunosorbent assay for erythromycin in milk. Food Chemistry, 171, 98–107. doi:10.1016/j.foodchem.2014.08.104
  • Yan, P. P., Zhang, J., Tang, Q. H., Deng, A. P., & Li, J. G. (2014). A quantum dot based electrochemiluminescent immunosensor for the detection of pg level phenylethanolamine A using gold nanoparticles as substrates and electron transfer accelerators. Analyst, 139(17), 4365–4372. doi:10.1039/C4AN00378K
  • Zhang, L., Gong, Y., Zhang, M., Xi, X., Li, M., Chen, Z, Yu, X., Zhou, Y. (2014). Development of a monoclonal antibody-based direct competitive enzyme-linked immunosorbent assay for a new β-adrenergic agonist phenylethanolamine A. Analytical Methods, 6(15), 5942–5950. doi:10.1039/C4AY00682H
  • Zhang, M. X., Li, C., & Wu, Y. L. (2012). Determination of phenylethanolamine A in animal hair, tissues and feeds by reversed phase liquid chromatography tandem mass spectrometry with QuEChERS. Journal of Chromatography B, 900, 94–99. doi:10.1016/j.jchromb.2012.05.030