4,070
Views
1
CrossRef citations to date
0
Altmetric
Review

Cold plasma technology: fundamentals and effect on quality of meat and its products

ORCID Icon, , &
Pages 451-478 | Received 27 Apr 2022, Accepted 24 Jun 2022, Published online: 05 Jul 2022

References

  • Aboubakr, H. A., Nisar, M., Nayak, G., Nagaraja, K. V., Collins, J., Bruggeman, P. J., & Goyal, S. M. (2020). Bactericidal efficacy of a two-dimensional array of integrated, coaxial, micro hollow, dielectric barrier discharge plasma against Salmonella enterica serovar Heidelberg. Foodborne Pathogens and Disease, 17(3), 157–165. doi:10.1089/fpd.2019.2698
  • Aboubakr, H. A., Williams, P., Gangal, U., Youssef, M. M., El-Sohaimy, S. A. A., Bruggeman, P. J., & Goyal, S. M. (2015). Virucidal effect of cold atmospheric gaseou plasma on feline calicivirus, a surrogate for human norovirus. Applied and Environmental Microbiology, 81(11), 3612–3622. doi:10.1128/AEM.00054-15
  • Afshari, R., & Hosseini, H. (2014). Non-thermal plasma as a new food preservation method, its present and prospect. Archives of Advances in Biosciences, 5(1). doi:10.22037/jps.v5i1.5348
  • Albertos, I., Martin-Diana, A. B., Cullen, P. J., Tiwari, B. K., Ojha, K. S., Bourke, P., & Rico, D. (2019). Shelf-life extension of herring (clupea harengus) using in-package atmospheric plasma technology. Innovative Food Science & Emerging Technologies, 53, 85–91. doi:10.1016/j.ifset.2017.09.010
  • Alp, E., & Aksu, M. I. (2010). Effects of water extract of urtica dioica L. And modified atmosphere packaging on the shelf life of ground beef. Meat Science, 86(2), 468–473. doi:10.1016/j.meatsci.2010.05.036
  • Arjunan, K. P., Sharma, V. K., & Ptasinska, S. (2015). Effects of atmospheric pressure plasmas on isolated and cellular DNA—a review. International Journal of Molecular Sciences, 16(2), 2971–3016. doi:10.3390/ijms16022971
  • Attri, P., Kim, Y. H., Park, D. H., Park, J. H., Hong, Y. J., Uhm, H. S., & Choi,  … , & H, E. (2015). Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Scientific Reports, 5(1), 1–8. doi:10.9734/JSRR/2015/14076
  • Bae, S. C., Park, S. Y., Choe, W., & Ha, S. D. (2015). Inactivation of murine norovirus-1 and hepatitis A virus on fresh meats by atmospheric pressure plasma jets. Food Research International, 76, 342–347. doi:10.1016/j.foodres.2015.06.039
  • Banu, M. S., Sasikala, P., Dhanapal, A., Kavitha, V., Yazhini, G., & Rajamani, L. (2012). Cold plasma as a novel food processing technology. IJETED, 4(2), 803–818.
  • Bauer, A., Ni, Y., Bauer, S., Paulsen, P., Modic, M., Walsh, J. L., & Smulders, F. J. M. (2017). The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Science, 128, 77–87. doi:10.1016/j.meatsci.2017.02.003
  • Bourke, P., Ziuzina, D., Han, L., Cullen, P. J., & Gilmore, B. F. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123(2), 308–324. doi:10.1111/jam.13429
  • Chaplot, S., Yadav, B., Jeon, B., & Roopesh, M. (2019). Atmospheric cold plasma and peracetic acid–based hurdle intervention to reduce Salmonella on raw poultry meat. Journal of Food Protection, 82(5), 878–888. doi:10.4315/0362-028X.JFP-18-377
  • Choi, M. S., Jeon, E. B., Kim, J. Y., Choi, E. H., Lim, J. S., Choi, J., & Park, S. Y. (2020). Impact of non-thermal dielectric barrier discharge plasma on Staphylococcus aureus and Bacillus cereus and quality of dried blackmouth angler (lophiomus setigerus). Journal of Food Engineering, 278, 1–9. doi:10.1016/j.jfoodeng.2020.109952
  • Choi, S., Puligundla, P., & Mok, C. (2016). Corona discharge plasma jet for inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology, 66(2), 685–694. doi:10.1007/s13213-015-1147-5
  • Clydesdale, F. M., & Ahmed, E. M. (1978). Colorimetry — methodology and applications. C R C Critical Reviews in Food Technology, 10(3), 243–301. doi:10.1080/10408397809527252
  • Cui, H., Wu, J., Li, C., & Lin, L. (2017). Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. Journal of Food Safety, 37(2), 1–10. doi:10.1111/jfs.12316
  • Dave, D., & Ghaly, A. E. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural & Biological Science, 6(4), 486–510. doi:10.3844/ajabssp.2011.486.510
  • De Smet, S., & Vossen, E. (2016). Meat: The balance between nutrition and health. A review. Meat Science, 120, 145–156. doi:10.1016/j.meatsci.2016.04.008
  • Deng, X. T., Shi, J. J., Shama, G., & Kong, M. G. (2005). Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores. Applied Physics Letters, 87(15), 153901. doi:10.1063/1.2103394
  • Dirks, B. P., Dobrynin, D., Fridman, G., Mukhin, Y., Fridman, A., & Quinlan, J. J. (2012). Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce campylobacter jejuni and Salmonella enterica. Journal of Food Protection, 75(1), 22–28. doi:10.4315/0362-028X.JFP-11-153
  • Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. doi:10.1088/1367-2630/11/11/115020
  • Frohling, A., Durek, J., Schnabel, U., Ehlbeck, J., Bolling, J., & Schluter, O. (2012). Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innovative Food Science & Emerging Technologies, 16, 381–390. doi:10.1016/j.ifset.2012.09.001
  • Gaens, W., & Bogaerts, A. (2013). Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. Journal of Physics D: Applied Physics, 46(27), 275201. doi:10.1088/0022-3727/46/27/275201
  • Gao, Y., Zhuang, H., Yeh, H. Y., Bowker, B., & Zhang, J. (2019). Effect of rosemary extract on microbial growth, pH, color, and lipid oxidation in cold plasma-processed ground chicken patties. Innovative Food Science & Emerging Technologies, 57, 1–6. doi:10.1016/j.ifset.2019.05.007
  • Gavahian, M., Chu, Y. H., Khaneghah, A. M., Barba, F. J., & Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science & Technology, 77, 32–41. doi:10.1016/j.tifs.2018.04.009
  • Georgescu, N. (2015). Dielectric barrier discharges for egg decontamination with cold atmospheric plasma: Physical and chemical characteristics. Romanian Journal of Physics, 60(9-10), 1561–1573.
  • González-González, C. R., Labo-Popoola, O., Delgado-Pando, G., Theodoridou, K., Doran, O., & Stratakos, A. C. (2021). The effect of cold atmospheric plasma and linalool nanoemulsions against Escherichia coli O157: H7 and Salmonella on ready-to-eat chicken meat. Lwt, 149, 1–10. doi:10.1016/j.lwt.2021.111898
  • Gök, V., Aktop, S., Özkan, M., & Tomar, O. (2019). The effects of atmospheric cold plasma on inactivation of Listeria monocytogenes and Staphylococcus aureus and some quality characteristics of pastırma—a dry-cured beef product. Innovative Food Science & Emerging Technologies, 56, 1–8. doi:10.1016/j.ifset.2019.102188
  • Han, L., Ziuzina, D., Heslin, C., Boehm, D., Patange, A., Sango, D. M., … Bourke, P. (2016). Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Frontiers in Microbiology, 7, 977–988. doi:10.3389/fmicb.2016.00977
  • Huang, M. M., Wang, J. M., Zhuang, H., Yan, W. J., Zhao, J. Y., & Zhang, J. H. (2019). Effect of in-package high voltage dielectric barrier discharge on microbiological, color and oxidation properties of pork in modified atmosphere packaging during storage. Meat Science, 149, 107–113. doi:10.1016/j.meatsci.2018.11.016
  • Jayasena, D. D., Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes. Food Microbiology, 46, 51–57. doi:10.1016/j.fm.2014.07.009
  • Jeong, J. Y., Hur, S. J., Yang, H. S., Moon, S. H., Hwang, Y. H., Park, G. B., & Joo, S. T. (2009). Discoloration characteristics of 3 major muscles from cattle during cold storage. Journal of Food Science, 74(1), C1–C5. doi:10.1111/j.1750-3841.2008.00983.x
  • Jung, S., Kim, H. J., Park, S., Yong, H. I., Choe, J. H., Jeon, H. J., … Jo, C. (2015). The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Science, 108, 132–137. doi:10.1016/j.meatsci.2015.06.009
  • Jung, S., Kim, H. J., Park, S., Yong, H. I., Choe, J. H., Jeon, H. J., …  Jo, C. (2015a). Color developing capacity of plasma-treated water as a source of nitrite for meat curing. Korean Journal for Food Science of Animal Resources, 35(5), 703–706. doi:10.5851/kosfa.2015.35.5.703
  • Jung, S., Lee, J., Lim, Y., Choe, W., Yong, H. I., & Jo, C. (2017). Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innovative Food Science & Emerging Technologies, 39, 113–118. doi:10.1016/j.ifset.2016.11.010
  • Kennedy, C., Buckley, D. J., & Kerry, J. P. (2004). Display life of sheep meats retail packaged under atmospheres of various volumes and compositions. Meat Science, 68(4), 649–658. doi:10.1016/j.meatsci.2004.05.018
  • Kim, B., Yun, H., Jung, S., Jung, Y., Jung, H., Choe, W., & Jo, C. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28(1), 9–13. doi:10.1016/j.fm.2010.07.022
  • Kim, H. J., Yong, H. I., Park, S., Choe, W., & Jo, C. (2013a). Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin. Current Applied Physics, 13(7), 1420–1425. doi:10.1016/j.cap.2013.04.021
  • Kim, H. J., Yong, H. I., Park, S., Kim, K., Bae, Y. S., Choe, W., … Jo, C. (2013b). Effect of inactivating Salmonella Typhimurium in raw chicken breast and pork loin using an atmospheric pressure plasma jet. Journal of Animal Science and Technology, 55(6), 545–549. doi:10.5187/JAST.2013.55.6.545
  • Kim, J. S., Lee, E. J., Cho, E. A., & Kim, Y. J. (2013c). Inactivation of Campylobacter jejuni using radio-frequency atmospheric pressure plasma on agar plates and chicken hams. Korean Journal for Food Science of Animal Resources, 33(3), 317–324. doi:10.5851/kosfa.2013.33.3.317
  • Kim, J. S., Lee, E. J., Choi, E. H., & Kim, Y. J. (2014). Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science & Emerging Technologies, 22, 124–130. doi:10.1016/j.ifset.2013.12.012
  • Kronn, T. G., Lawrence, K. C., Zhuang, H., Hiett, K. L., Rothrock, M. J., Huang, Y. W., …  Abdo, Z. (2015). Nonthermal plasma system for extending shelf life of raw broiler breast fillets. Transactions of the ASABE, 58(2), 493–500. doi:10.13031/trans.58.10887
  • Langmuir, I. (1928). Oscillations in ionized gases. Proceedings of the National Academy of Science of the USA, 14(8), 627–637. doi:10.1073/pnas.14.8.627
  • Lee, H. J., Jung, H., Choe, W., Ham, J. S., Lee, J. H., & Jo, C. (2011). Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiology, 28(8), 1468–1471. doi:10.1016/j.fm.2011.08.002
  • Lee, H., Yong, H. I., Kim, H. J., Choe, W., Yoo, S. J., Jang, E. J., & Jo, C. (2016). Evaluation of the microbiological safety, quality changes, and genotoxicity of chicken breast treated with flexible thin-layer dielectric barrier discharge plasma. Food Science and Biotechnology, 25(4), 1189–1195. doi:10.1007/s10068-016-0189-1
  • Lee, S., Lee, H., Kim, S., Lee, J., Ha, J., Choi, Y., … Yoon, Y. (2018). Microbiological safety of processed meat products formulated with low nitrite concentration—A review. Asian-Australasian Journal of Animal Sciences, 31(8), 1073–1077. doi:10.5713/ajas.17.0675
  • Lim, Y. B., Park, S., Kim, H. R., Yong, H. I., Kim, S. H., & Lee, H. J. (2015). Plasma treatment process for processed meat and plasma treatment apparatus for processed meat. Korea Patent Submission, 10-2015, 0029641.
  • Luño, M., Roncalés, P., Djenane, D., & Beltrán, J. A. (2000). Beef shelf life in low O2 and high CO2 atmospheres containing different low CO concentrations. Meat Science, 55(4), 413–419. doi:10.1016/S0309-1740(99)00170-9
  • Mai-Prochnow, A., Murphy, A. B., McLean, M., Kong, M. G., & Ostrikov, K. (2014). Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517. doi:10.1016/j.ijantimicag.2014.01.025
  • Mancini, R. A., & Hunt, M. (2005). Current research in meat color. Meat Science, 71(1), 100–121. doi:10.1016/j.meatsci.2005.03.003
  • Min, B., & Ahn, D. U. (2005). Mechanism of lipid peroxidation in meat and meat products-A review. Food Science and Biotechnology, 14(1), 152–163.
  • Misra, N. N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology, 64, 74–86. doi:10.1016/j.tifs.2017.04.005
  • Misra, N. N., Keener, K. M., Bourke, P., & Cullen, P. J. (2015). Generation of in-package cold plasma and efficacy assessment using methylene blue. Plasma Chemistry and Plasma Processing, 35(6), 1043–1056. doi:10.1007/s11090-015-9638-5
  • Misra, N. N., Schlüter, O., & Cullen, P. J. (2016). Cold plasma in Food and agriculture:Fundamentals and applications. (1st ed.). Academic press, Elsevier Ltd.
  • Moon, S. Y., Kim, D. B., Gweon, B., Choe, W., Song, H. P., & Jo, C. (2009). Feasibility study of the sterilization of pork and human skin surfaces by atmospheric pressure plasmas. Thin Solid Films, 517(14), 4272–4275. doi:10.1016/j.tsf.2009.02.018
  • Mor-Mur, M., & Yuste, J. (2010). Emerging bacterial pathogens in meat and poultry: An overview. Food and Bioprocess Technology, 3(1), 24–35. doi:10.1007/s11947-009-0189-8
  • Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnology Advances, 26(6), 610–617. doi:10.1016/j.biotechadv.2008.08.001
  • Moutiq, R., Misra, N. N., Mendonca, A., & Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science, 159, 1–9. doi:10.1016/j.meatsci.2019.107942
  • Noriega, E., Shama, G., Laca, A., Díaz, M., & Kong, M. G. (2011). Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiology, 28(7), 1293–1300. doi:10.1016/j.fm.2011.05.007
  • Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K. D., & Von Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7(3-4), 250–257. doi:10.1002/ppap.200900077
  • Patange, A., Boehm, D., Bueno-Ferrer, C., Cullen, P. J., & Bourke, P. (2017). Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiology, 66, 48–54. doi:10.1016/j.fm.2017.04.002
  • Pelletier, J. (1992). Sterilization by plasma processing. Aggressologie, 33, 457–477.
  • Qian, J., Wang, C., Zhuang, H., Nasiru, M. M., Zhang, J., & Yan, W. (2021). Evaluation of meat-quality and myofibrillar protein of chicken drumsticks treated with plasma-activated lactic acid as a novel sanitizer. LWT, 138, 110642. doi:10.1016/j.lwt.2020.110642
  • Qian, J., Zhao, Y., Yan, L., Luo, J., Yan, W., & Zhang, J. (2022). Improving the lipid oxidation of beef patties by plasma-modified essential oil/protein edible composite films. LWT, 154, 112662. doi:10.1016/j.lwt.2021.112662
  • Qian, J., Zhuang, H., Nasiru, M. M., Muhammad, U., Zhang, J., & Yan, W. (2019). Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella enteritidis and quality of beef. Innovative Food Science & Emerging Technologies, 57, 102196. doi:10.1016/j.ifset.2019.102196
  • Ripoll, G., Alcalde, M. J., Horcada, A., & Panea, B. (2011). Suckling kid breed and slaughter weight discrimination using muscle colour and visible reflectance. Meat Science, 87(2), 151–156. doi:10.1016/j.meatsci.2010.10.006
  • Roh, S. H., Lee, S. Y., Park, H. H., Lee, E. S., & Min, S. C. (2019). Effects of the treatment parameters on the efficacy of the inactivation of Salmonella contaminating boiled chicken breast by in-package atmospheric cold plasma treatment. International Journal of Food Microbiology, 293, 24–33. doi:10.1016/j.ijfoodmicro.2018.12.016
  • Roh, S. H., Oh, Y. J., Lee, S. Y., Kang, J. H., & Min, S. C. (2020). Inactivation of Escherichia coli O157: H7, salmonella, Listeria monocytogenes, and tulane virus in processed chicken breast via atmospheric in-package cold plasma treatment. Lwt, 127, 109429. doi:10.1016/j.lwt.2020.109429
  • Rossow, M., Ludewig, M., & Braun, P. G. (2018). Effect of cold atmospheric pressure plasma treatment on inactivation of Campylobacter jejuni on chicken skin and breast fillet. LWT, 91, 265–270. doi:10.1016/j.lwt.2018.01.052
  • Rothrock, M. J., Zhuang, H., Lawrence, K. C., Bowker, B. C., Gamble, G. R., & Hiett, K. L. (2017). In-package inactivation of pathogenic and spoilage bacteria associated with poultry using dielectric barrier discharge-cold plasma treatments. Current Microbiology, 74(2), 149–158. doi:10.1007/s00284-016-1158-x
  • Royintarat, T., Choi, E. H., Boonyawan, D., Seesuriyachan, P., & Wattanutchariya, W. (2020). Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Scientific Reports, 10(1), 1–14. doi:10.1038/s41598-020-58199-w
  • Rød, S. K., Hansen, F., Leipold, F., & Knøchel, S. (2012). Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality. Food Microbiology, 30(1), 233–238. doi:10.1016/j.fm.2011.12.018
  • Sahebkar, A., Hosseini, M., & Sharifan, A. (2020). Plasma-assisted preservation of breast chicken fillets in essential oils-containing marinades. LWT, 131, 109759. doi:10.1016/j.lwt.2020.109759 
  • Scholtz, V., Pazlarova, J., Souskova, H., Khun, J., & Julak, J. (2015). Nonthermal plasma – a tool for decontamination and disinfection. Biotechnology Advances, 33(6), 1108–1119. doi:10.1016/j.biotechadv.2015.01.002
  • Shahidi, F., & Zhong, Y. (2010). Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067–4079. doi:10.1039/b922183m
  • Shi, Y., Wang, X., Borhan, M. S., Young, J., Newman, D., Berg, E., & Sun, X. (2021). A review on meat quality Evaluation methods based on Non-destructive computer vision and artificial intelligence technologies. Food Science of Animal Resources, 41(4), 563–588. doi:10.5851/kosfa.2021.e25
  • Stoica, M., Alexe, P., & Mihalcea, L. (2014). Atmospheric cold plasma as new strategy for foods processing-an overview. Innovative Romanian Food Biotechnology, 15, 1–8.
  • Stratakos, A. C., & Grant, I. R. (2018). Evaluation of the efficacy of multiple physical, biological and natural antimicrobial interventions for control of pathogenic Escherichia coli on beef. Food Microbiology, 76, 209–218. doi:10.1016/j.fm.2018.05.011
  • Stratakos, A. C., & Koidis, A. (2015). Suitability, efficiency and microbiological safety of novel physical technologies for the processing of ready-to-eat meats and pumpable products. International Journal of Food Science and Technology, 50(6), 1283–1302. doi:10.1111/ijfs.12781
  • Timmermann, E., Bansemer, R., Gerling, T., Hahn, V., Weltmann, K. D., Nettesheim, S., & Puff, M. (2020). Piezoelectric-driven plasma pen with multiple nozzles used as a medical device: Risk estimation and antimicrobial efficacy. Journal of Physics D: Applied Physics, 54(2), 025201. doi:10.1088/1361-6463/abb900
  • Ulbin-Figlewicz, N., Brychcy, E., & Jarmoluk, A. (2015a). Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. Journal of Food Science and Technology, 52(2), 1228–1232. doi:10.1007/s13197-013-1108-6
  • Ulbin-Figlewicz, N., Jarmoluk, A., & Marycz, K. (2015b). Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 65(3), 1537–1546. doi:10.1007/s13213-014-0992-y
  • Van Boekel, M., Fogliano, V., Pellegrini, N., Stanton, C., Scholz, G., Lalljie, S., Somoza, V., Knorr, D., Jasti, P. R., & Eisenbrand, G. (2010). A review on the beneficial aspects of food processing. Molecular Nutrition and Food Research, 54(9), 1215–1247. doi:10.1002/mnfr.200900608
  • Wang, J. M., Zhuang, H., Lawrence, K., & Zhang, J. H. (2018). Disinfection of chicken fillets in packages with atmospheric cold plasma: Effects of treatment voltage and time. Journal of Applied Microbiology, 124(5), 1212–1219. doi:10.1111/jam.13637
  • Wang, J., Zhuang, H., Hinton Jr, A., & Zhang, J. (2016). Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiology, 60, 142–146. doi:10.1016/j.fm.2016.07.007
  • Wang, X., Wang, Z., Zhuang, H., Nasiru, M. M., Yuan, Y., Zhang, J., & Yan, W. (2021). Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Science, 176, 1–9. doi:10.1016/j.meatsci.2021.108456
  • Yadav, B., Spinelli, A. C., Govindan, B. N., Tsui, Y. Y., McMullen, L. M., & Roopesh, M. S. (2019). Cold plasma treatment of ready-to-eat ham: Influence of process conditions and storage on inactivation of Listeria innocua. Food Research International, 123, 276–285. doi:10.1016/j.foodres.2019.04.065
  • Yadav, B., Spinelli, A. C., Misra, N. N., Tsui, Y. Y., McMullen, L. M., & Roopesh, M. S. (2020). Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage. Journal of Food Science, 85(4), 1203–1212. doi:10.1111/1750-3841.15072
  • Yong, H. I., Lee, H., Park, S., Park, J., Choe, W., Jung, S., & Jo, C. (2017). Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties. Meat Science, 123, 151–156. doi:10.1016/j.meatsci.2016.09.016
  • Yong, H. I., Lee, S. H., Kim, S. Y., Park, S., Park, J., Choe, W., & Jo, C. (2019). Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innovative Food Science & Emerging Technologies, 53, 78–84. doi:10.1016/j.ifset.2017.09.005
  • Yoo, J. H., Baek, K. H., Heo, Y. S., Yong, H. I., & Jo, C. (2021). Synergistic bactericidal effect of clove oil and encapsulated atmospheric pressure plasma against Escherichia coli O157: H7 and Staphylococcus aureus and its mechanism of action. Food Microbiology, 93, 1–8. doi:10.1016/j.fm.2020.103611
  • Zhang, M., Oh, J. K., Cisneros-Zevallos, L., & Akbulut, M. (2013). Bactericidal effects of nonthermal low-pressure oxygen plasma on S. Typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering, 119(3), 425–432. doi:10.1016/j.jfoodeng.2013.05.045
  • Zhang, X., Song, L., Gao, T., Zhang, L., Jiang, Y., Li, J. L., …  Zhou, G. H. (2018). Effect of ultrasonic thawing method on quality characteristics of chicken breast meat. Food Sci, 39, 135–140.
  • Zhao, W., Zhifei, H., Xiao, G., & Hongjun, L. (2018). Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Science, 146, 131–139. doi:10.1016/j.meatsci.2018.08.006
  • Zhuang, H., Rothrock Jr, M. J., Hiett, K. L., Lawrence, K. C., Gamble, G. R., Bowker, B. C., & Keener, K. M. (2019). In-package antimicrobial treatment of chicken breast meat with high voltage dielectric barrier discharge–electric voltage Effect1. Journal of Applied Poultry Research, 28(4), 801–807. doi:10.3382/japr/pfz036
  • Zhuang, H., Rothrock Jr, M. J., Hiett, K. L., Lawrence, K. C., Gamble, G. R., Bowker, B. C., & Keener, K. M. (2019a). In-package air cold plasma treatment of chicken breast meat: Treatment time effect. Journal of Food Quality, 2019, 1–7. doi:10.1155/2019/1837351