677
Views
0
CrossRef citations to date
0
Altmetric
Articles

Immune-enhancing effects of Hibiscus syriacus roots in RAW264.7 macrcophages

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 617-626 | Received 14 Apr 2022, Accepted 25 Jul 2022, Published online: 16 Aug 2022

References

  • Bogdan, C. (2001). Nitric oxide and the immune response. Nature Immunology, 2(10), 907–916. https://doi.org/10.1038/ni1001-907
  • Chae, S. W. (2005). Function and activation of NF-κB in immune system. Korean J Otolaryngol, 48(3), 284–288.
  • Cheng, Y. L., Lee, S. C., Harn, H. J., Huang, H. C., & Chang, W. L. (2008). The extract of Hibiscus syriacus inducing apoptosis by activating p53 and AIF in human lung cancer cells. The American Journal of Chinese Medicine, 36((01|1)), 171–184. https://doi.org/10.1142/S0192415X08005680
  • Coleman, J. W. (2001). Nitric oxide in immunity and inflammation. International Immunopharmacology, 1(8), 1397–1406. https://doi.org/10.1016/s1567-5769(01)00086-8
  • Dituri, F., Mazzocca, A., Giannelli, G., & Antonaci, S. (2011). PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors. Clinical and Developmental Immunology, 2011, e947858. https://doi.org/10.1155/2011/947858
  • Dorrington, M. G., & Fraser, I. D. C. (2019). NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration. Frontiers in Immunology, 10, e705. https://doi.org/10.3389/fimmu.2019.00705
  • Duque, G. A., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5, e491. https://doi.org/10.3389/fimmu.2014.00491
  • Eo, H. J., Shin, H., Song, J. H., & Park, G. H. (2021). Immuno-enhancing effects of fruit of actinidia polygama in macrophages. Food and Agricultural Immunology, 32(1), 754–765. https://doi.org/10.1080/09540105.2021.1982868
  • Hayden, M. S., West, A. P., & Ghosh, S. (2006). NF-κB and the immune response. Oncogene, 25(51), 6758–6780. https://doi.org/10.1038/sj.onc.1209943
  • Huang, G., Shi, L., & Chi, H. (2009). Regulation of JNK and p38 MAPK in the immune system: Signal integration, propagation and termination. Cytokine, 48(3), 161–169. https://doi.org/10.1016/j.cyto.2009.08.002
  • Jang, M., Lim, T. G., Hong, H. D., Rhee, Y. K., Kim, K. T., Lee, E. J., Lee, J. H., Lee, Y. J., Kim, Y. B., & Cho, C. W. (2016). Immuno-stimulatory activities of a high molecular weight fraction from cynanchum wilfordii radix obtained by ultrafiltration. Korean Journal of Food Science and Technology, 48(3), 268–274. https://doi.org/10.9721/KJFST.2016.48.3.268
  • Jang, Y. W., Jung, J. Y., Lee, I. K., Kang, S. Y., & Yun, B. S. (2012). Nonanoic acid, an antifungal compound from Hibiscus syriacus Ggoma. Mycobiology, 40(2), 145–146. https://doi.org/10.5941/MYCO.2012.40.2.145
  • Jo, E. K., Suh, H. W., & Park, J. K. (2019). Effector pathways of toll-like receptor-inducible innate immune responses in macrophages. Journal of Bacteriology and Virology, 49(1), 12–26. https://doi.org/10.4167/jbv.2019.49.1.12
  • Kim, E. K., & Choi, E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802(4), 396–405. https://doi.org/10.1016/j.bbadis.2009.12.009
  • Kim, Y. H., Im, A. R., Park, B. K., Paek, S. H., Choi, G., Kim, Y. R., Whang, W. K., Lee, K. H., Oh, S. E., & Lee, M. Y. (2018). Antidepressant-like and neuroprotective effects of ethanol extract from the root bark of Hibiscus syriacus L. BioMed Research International, 2018, e7383869. https://doi.org/10.1155/2018/7383869
  • Koyasu, S. (2003). The role of PI3K in immune cells. Nature Immunology, 4(4), 313–319. https://doi.org/10.1038/ni0403-313
  • Lacy, P., & Stow, J. L. (2011). Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways. Blood, 118(1), 9–18. https://doi.org/10.1182/blood-2010-08-265892
  • Lee, H. J., Lee, S. W., Park, C. G., Ahn, Y. S., Kim, J. S., Bang, M. S., Oh, C. H., & Kim, C. T. (2015). Effects of white Hibiscus syriacus L. Flower extracts on antioxidant activity and bone resorption inhibition. Korean Journal of Medicinal Crop Science, 23(3), 190–197. https://doi.org/10.7783/KJMCS.2015.23.3.190
  • Li, Y., Meng, T., Hao, N., Tao, H., Zou, S., Li, M., Ming, P., Ding, H., Dong, J., Feng, S., Li, J., Wang, X., Wu, J., (2017). Immune regulation mechanism of astragaloside IV on RAW264.7 cells through activating the NF-κB/MAPK signaling pathway. International Immunopharmacology, 49, 38–49. https://doi.org/10.1016/j.intimp.2017.05.017
  • Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Allergy, Asthma, and Clinical Immunology, 14(S2), 49. https://doi.org/10.1016/j.intimp.2017.05.017
  • Monmai, C., You, S. G., & Park, W. J. (2019). Immune-enhancing effects of anionic macromolecules extracted from Codium fragile on cyclophosphamide-treated mice. PLOS ONE, 14(2), e0211570. https://doi.org/10.1371/journal.pone.0211570
  • Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8(12), 958–969. https://doi.org/10.1038/nri2448
  • Ryoo, I. J., Yun, B. S., Lee, I. K., Kim, Y. H., Lee, I. S., Ahn, J. S., Bae, K. H., & Yoo, I. D. (2010). Hydroxyhibiscone A, a novel human neutrophil elastase inhibitor from hibiscus syriacus. Journal of Microbiology and Biotechnology, 20(8), 1189–1191. https://doi.org/10.4014/jmb.1004.04028
  • Shi, L. S., Wu, C. H., Yang, T. C., Yao, C. W., Lin, H. C., & Chang, W. L. (2014). Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia, 97, 184–191. https://doi.org/10.4014/jmb.1004.04028
  • Son, H. J., Eo, H. J., Park, G. H., & Jeong, J. B. (2021). Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4-dependent MAPK activation in mouse macrophages, RAW264.7 cells. Food Science & Nutrition, 9(1), 514–521. https://doi.org/10.1002/fsn3.2020
  • Wang, W., Wang, L., Liu, Z., Song, X., Yi, Q., Yang, C., & Song, L. (2020). The involvement of TLR signaling and anti-bacterial effectors in enhanced immune protection of oysters after vibrio splendidus pre-exposure. Developmental and Comparative Immunology, 103, e103498. https://doi.org/10.1016/j.dci.2019.103498
  • Xu, X. Y., Tran, T. H. M., Perumalsamy, H., Sanjeevram, D., & Kim, Y. J. (2021). Biosynthetic gold nanoparticles of Hibiscus syriacus L. callus potentiates anti-inflammation efficacy via an autophagy-dependent mechanism. Materials Science and Engineering: C, 124, e112035. https://doi.org/10.1016/j.msec.2021.112035
  • Yang, J. E., Park, S. W., Ngo, H. T. T., Seo, S. A., Go, E. B., Hwang, J. S., Hwang, E., & Yi, T. H. (2020). Skin-protective and anti-inflammatory effects of Hibiscus syriacus L. (mugunghwa): A comparative study of five parts of the plant. Pharmacognosy Magazine, 16(67), 183–191. https://doi.org/10.4103/pm.pm_185_19
  • Yoo, I. D., Lee, I. K., Ryoo, I. J., Choung, D. H., Han, K. H., & Yun, B. S. (1997). Studies on the constituents of Hibiscus syriacus (I). Kor J Pharmacogn, 28(3), 12–116.
  • Zhang, R. R., Hu, R. D., Lu, X. Y., Ding, X. Y., Huang, G. Y., Duan, L. X., & Zhang, S. J. (2020). Polyphenols from the flower of Hibiscus syriacus linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell. Biomedicine & Pharmacotherapy, 130, 110517. https://doi.org/10.1016/j.biopha.2020.110517.