1,063
Views
0
CrossRef citations to date
0
Altmetric
Articles

A SERS-based immunochromatographic assay for ultrasensitive and quantitative detection of florfenicol using long wavelength absorption of Au nanocubes

, , , , &
Pages 752-767 | Received 19 Aug 2022, Accepted 30 Aug 2022, Published online: 04 Oct 2022

References

  • Anadón, A., Martínez, M. A., Martínez, M., Ríos, A., Caballero, V., Ares, I., & Martínez-Larrañaga, M. R. (2008). Plasma and tissue depletion of florfenicol and Florfenicol-amine in chickens. Journal of Agricultural and Food Chemistry, 56(22), 11049–11056. https://doi.org/10.1021/jf802138y
  • Bahadır, E. B., & Sezgintürk, M. (2016). Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry, 82, 286–306. https://doi.org/10.1016/j.trac.2016.06.006
  • Cannon, M., Harford, S., & Davies, J. (1990). A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives. Journal of Antimicrobial Chemotherapy, 26(3), 307–317. https://doi.org/10.1093/jac/26.3.307
  • Deng, D., Yang, H., Liu, C., Zhao, K., Li, J., & Deng, A. (2019). Ultrasensitive detection of Sudan I in food samples by a quantitative immunochromatographic assay. Food Chemistry, 277, 595–603. https://doi.org/10.1016/j.foodchem.2018.10.129
  • Fodey, T. L., George, S. E., Traynor, I. M., Delahaut, P., Kennedy, D. G., Elliott, C. T., & Crooks, S. R. H. (2013). Approaches for the simultaneous detection of thiamphenicol, florfenicol and florfenicol amine using immunochemical techniques. Journal of Immunological Methods, 393(1), 30–37. https://doi.org/10.1016/j.jim.2013.04.003
  • Juntunen, E., Myyryläinen, T., Salminen, T., Soukka, T., & Pettersson, K. (2012). Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Analytical Biochemistry, 428(1), 31–38. https://doi.org/10.1016/j.ab.2012.06.005
  • Kim, K., Han, D. K., Choi, N., Kim, S. H., Joung, Y., Kim, K., Ho, N. T., Joo, S. W., & Choo, J. (2021). Surface-Enhanced Raman scattering-based dual-flow lateral flow assay sensor for the ultrasensitive detection of the thyroid-stimulating hormone. Analytical Chemistry, 93(17), 6673–6681. https://doi.org/10.1021/acs.analchem.0c05336
  • Li, J. F., Tian, X. D., Li, S. B., Anema, J. R., Yang, Z. L., Ding, Y., Wu, Y. F., Zeng, Y. M., Chen, Q. Z., Ren, B., Wang, Z. L., & Tian, Z. Q. (2013). Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature Protocols, 8(1), 52–65. https://doi.org/10.1038/nprot.2012.141
  • Li, M., Yang, H., Zhao, K., Li, J., Jiang, D., Sun, L., & Deng, A. (2014). Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). Journal of Agricultural and Food Chemistry, 62(45), 10896–10902. https://doi.org/10.1021/jf503599x
  • Li, Q., Wang, J., Ding, Q., Chen, M., & Ma, F. (2017). Coupling effect on charge-transfer mechanism of surface-enhanced resonance Raman scattering. Journal of Raman Spectroscopy, 48(4), 560–569. https://doi.org/10.1002/jrs.5077
  • Li, R., Lin, Z.-J., Yang, J.-Y., Xu, Z. L., Wang, H., Lei, H.-T., Sun, Y.-M., & Shen, Y.-D. (2018). An indirect competitive enzyme-linked immunosorbent assay for simultaneous determination of florfenicol and thiamphenicol in animal meat and urine. Chinese Journal of Analytical Chemistry, 46(8), 1321–1328. https://doi.org/10.1016/S1872-2040(18)61104-1
  • Mak, W. C., Beni, V., & Turner, A. P. F. (2016). Lateral-flow technology: From visual to instrumental. TrAC Trends in Analytical Chemistry, 79, 297–305. https://doi.org/10.1016/j.trac.2015.10.017
  • Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275(5303), 1102–1106. https://doi.org/10.1126/science.275.5303.1102
  • Rairat, T., Hsieh, C. Y., Thongpiam, W., Chuchird, N., & Chou, C.-C. (2020). Temperature-dependent non-linear pharmacokinetics of florfenicol in Nile tilapia (Oreochromis niloticus) and its implementation in optimal dosing regimen determination. Aquaculture, 517, 734794. https://doi.org/10.1016/j.aquaculture.2019.734794
  • Rong, Z., Xiao, R., Xing, S., Xiong, G., Yu, Z., Wang, L., Jia, X., Wang, K., Cong, Y., & Wang, S. (2018). SERS-based lateral flow assay for quantitative detection of C-reactive protein as an early bioindicator of a radiation-induced inflammatory response in nonhuman primates. The Analyst, 143(9), 2115–2121. https://doi.org/10.1039/C8AN00160J
  • Sadeghi, S., & Olieaei, S. (2019). Capped cadmium sulfide quantum dots with a new ionic liquid as a fluorescent probe for sensitive detection of florfenicol in meat samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117349. https://doi.org/10.1016/j.saa.2019.117349
  • Saito-Shida, S., Shiono, K., Narushima, J., Nemoto, S., & Akiyama, H. (2019). Determination of total florfenicol residues as florfenicol amine in bovine tissues and eel by liquid chromatography–tandem mass spectrometry using external calibration. Journal of Chromatography B, 1109(2019), 37–44. https://doi.org/10.1016/j.jchromb.2019.01.018
  • Schlucker, S. (2014). Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 53(19), 4756–4795. https://doi.org/10.1002/anie.201205748
  • Sharma, B., Frontiera, R. R., Henry, A. I., Ringe, E., & Van Duyne, R. P. (2012). SERS: Materials, applications, and the future. Materials Today, 15(1-2), 16–25. https://doi.org/10.1016/S1369-7021(12)70017-2
  • Sichilongo, K., & Kolanyane, P. (2020). Chloride adduct tandem mass spectrometry for the quantification of thiamphenicol and florfenicol in bovine muscle. Journal of Food Composition and Analysis, 87(2020), 103428. https://doi.org/10.1016/j.jfca.2020.103428
  • Tao, Y., Zhu, F., Chen, D., Wei, H., Pan, Y., Wang, X., Liu, Z., Huang, L., Wang, Y., & Yuan, Z. (2014). Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography–electrospray ionisation tandem mass spectrometry. Food Chemistry, 150(2014), 500–506. https://doi.org/10.1016/j.foodchem.2013.11.013
  • Taranova, N. A., Berlina, A. N., Zherdev, A. V., & Dzantiev, B. B. (2015). ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosensors and Bioelectronics, 63(2015), 255–261. https://doi.org/10.1016/j.bios.2014.07.049
  • Tian, L., Bayen, S., & Yaylayan, V. (2017). Thermal degradation of five veterinary and human pharmaceuticals using pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis, 127(2017), 120–125. https://doi.org/10.1016/j.jaap.2017.08.016
  • Wang, B., Pang, M., Zhao, X., Xie, K., Zhang, P., Zhang, G., Zhang, T., Liu, X., & Dai, G. (2019). Development and comparison of liquid-liquid extraction and accelerated solvent extraction methods for quantitative analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry eggs. Journal of Mass Spectrometry, 54(6), 488–494. https://doi.org/10.1002/jms.4355
  • Wang, L., Wang, X., Cheng, L., Ding, S., Wang, G., Choo, J., & Chen, L. (2021). SERS-based test strips: Principles, designs and applications. Biosensors and Bioelectronics, 189(2021), 113360. https://doi.org/10.1016/j.bios.2021.113360
  • Weiss, A., & Haran, G. (2001). Time-dependent single-molecule Raman scattering as a probe of surface dynamics. The Journal of Physical Chemistry B, 105(49), 12348–12354. https://doi.org/10.1021/jp0126863
  • Wu, P., Cai, C., Yang, D., Zhang, Y., Hu, Z., & Wang, T. (2015). Determination of three kinds of banned drugs in milk powder by hybrid solid-phase extraction purification combined with gas chromatography and mass spectrometry. Journal of Separation Science, 38(18), 3288–3294. https://doi.org/10.1002/jssc.201500431
  • Xiao, R., Lu, L., Rong, Z., Wang, C., Peng, Y., Wang, F., Wang, J., Sun, M., Dong, J., Wang, D., Wang, L., Sun, N., & Wang, S. (2020). Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosensors and Bioelectronics, 168(2020), 112524. https://doi.org/10.1016/j.bios.2020.112524
  • Xie, X., Wang, B., Pang, M., Zhao, X., Xie, K., Zhang, Y., Wang, Y. J., Guo, Y. W., Liu, C. J., Bu, X. N., Wang, R., Shi, H., Zhang, G., Zhang, T., Dai, G., Wang, J. (2018) Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry. Food Chemistry, 269(2018), 542–548 https://doi.org/10.1016/j.foodchem.2018.07.045
  • Xu, M., Qian, M., Zhang, H., Ma, J., Wang, J., & Wu, H. (2015). Simultaneous determination of florfenicol with its metabolite based on modified quick, easy, cheap, effective, rugged, and safe sample pretreatment and evaluation of their degradation behavior in agricultural soils. Journal of Separation Science, 38(2), 211–217. https://doi.org/10.1002/jssc.201400919
  • Zeng, Q., Liao, C., Terhune, J., & Wang, L. (2019). Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. Microbiome, 7(1), 155. https://doi.org/10.1186/s40168-019-0773-8
  • Zhang, G. N., Li, J. R., Shen, A. G., & Hu, J. M. (2015). Synthesis of sizetunable chitosan encapsulated gold-silver nanoflowers and their application in SERS imaging of living cells. Physical Chemistry Chemical Physics, 17(33), 21261–21267. https://doi.org/10.1039/C4CP05343E
  • Zhu, Z. N., Meng, H. F., Liu, W. J., Liu, X. F., Gong, J. X., Qiu, X. H., Jiang, L., Wang, D., & Tang, Z. Y. (2011). Superstructures and SERS properties of gold nanocrystals with different shapes. Angewandte Chemie International Edition, 50(7), 1593–1596. https://doi.org/10.1002/anie.201005493