684
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Litopenaeus vannamei fermentation using selected Lactobacillus spp. to reduce its allergenicity

ORCID Icon, &
Article: 2210267 | Received 05 Oct 2022, Accepted 28 Apr 2023, Published online: 29 May 2023

References

  • Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100(7), 2939–2951. https://doi.org/10.1007/s00253-016-7343-9
  • Azcarate-Peril, M. A., McAuliffe, O., Altermann, E., Lick, S., Russell, W. M., & Klaenhammer, T. R. (2005). Microarray analysis of a Two-component regulatory system involved in acid resistance and proteolytic activity inLactobacillus acidophilus. Applied and Environmental Microbiology, 71(10), 5794–5804. https://doi.org/10.1128/AEM.71.10.5794-5804.2005
  • Azcarate-Peril, M. A., Tallon, R., & Klaenhammer, T. R. (2009). Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. Journal of Dairy Science, 92(3), 870–886. https://doi.org/10.3168/jds.2008-1457
  • Dong, X., Wang, J., & Raghavan, V. (2020). Effects of high-intensity ultrasound processing on the physiochemical and allergenic properties of shrimp. Innovative Food Science & Emerging Technologies, 65, 102441. https://doi.org/10.1016/j.ifset.2020.102441
  • Dong, X., Wang, J., & Raghavan, V. (2021). Impact of microwave processing on the secondary structure, in-vitro protein digestibility and allergenicity of shrimp (Litopenaeus vannamei) proteins. Food Chemistry, 337, 127811. https://doi.org/10.1016/j.foodchem.2020.127811
  • El Mecherfi, K. E., Lupi, R., Cherkaoui, M., Albuquerque, M. A. C., Todorov, S. D., Tranquet, O., Klingebiel, C., Rogniaux, H., Denery-Papini, S., Onno, B., de Melo Franco, B. D. G., & Larré, C. (2022). Fermentation of gluten by Lactococcus lactis LLGKC18 reduces its antigenicity and allergenicity. Probiotics and Antimicrobial Proteins, 14(5), 779–791. https://doi.org/10.1007/s12602-021-09808-1
  • El-Qutob, D. (2017). Shrimp allergy: Beyond avoidance diet. European Annals of Allergy and Clinical Immunology, 49(6), 252–256. https://doi.org/10.23822/EurAnnACI.1764-1489.16
  • Fadda, S., Oliver, G., & Vignolo, G. (2002). Protein degradation by Lactobacillus plantarum and Lactobacillus casei in a sausage model system. Journal of Food Science, 67(3), 1179–1183. https://doi.org/10.1111/j.1365-2621.2002.tb09473.x
  • Fadda, S., Sanz, Y., Vignolo, G., Aristoy, M., Oliver, G., & Toldrá, F. (1999). Characterization of muscle sarcoplasmic and myofibrillar protein hydrolysis caused by Lactobacillus plantarum. Applied and Environmental Microbiology, 65(8), 3540–3546. https://doi.org/10.1128/AEM.65.8.3540-3546.1999
  • Frati, F., Incorvaia, C., Cavaliere, C., Di Cara, G., Marcucci, F., Esposito, S., & Masieri, S. (2018). The skin prick test. Journal of Biological Regulators and Homeostatic Agents, 32(1 Suppl. 1), 19–24. PMID: 29552869.
  • Fu, L., Wang, C., Wang, J., Ni, S., & Wang, Y. (2019). Maillard reaction with ribose, galacto-oligosaccharide or chitosan-oligosaccharide reduced the allergenicity of shrimp tropomyosin by inducing conformational changes. Food Chemistry, 274, 789–795. https://doi.org/10.1016/j.foodchem.2018.09.068
  • Fu, L., Xie, M., Wang, C., Qian, Y., Huang, J., Sun, Z., Zhang, H., & Wang, Y. (2020). Lactobacillus casei Zhang alleviates shrimp tropomyosin-induced food allergy by switching antibody isotypes through the NF-κB-dependent immune tolerance. Molecular Nutrition & Food Research, 64(10), e1900496. https://doi.org/10.1002/mnfr.201900496
  • Hu, Y., Xia, W., & Ge, C. (2007). Effect of mixed starter cultures fermentation on the characteristics of silver carp sausages. World Journal of Microbiology and Biotechnology, 23(7), 1021–1031. https://doi.org/10.1007/s11274-006-9330-2
  • Hughes, M. C., Kerry, J. P., Arendt, E. K., Kenneally, P. M., McSweeney, P. L., & O'Neill, E. E. (2002). Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Science, 62(2), 205–216. https://doi.org/10.1016/S0309-1740(01)00248-0
  • Laly, S. J., Sankar, T. V., & Panda, S. K. (2019). Identification of allergic proteins of flower tail shrimp (Metapenaeus dobsonii). Journal of Food Science and Technology, 56(12), 5415–5421. https://doi.org/10.1007/s13197-019-04012-0
  • Leung, N. Y., Wai, C. Y., Shu, S., Wang, J., Kenny, T. P., Chu, K. H., & Leung, P. S. (2014). Current immunological and molecular biological perspectives on seafood allergy: A comprehensive review. Clinical Reviews in Allergy & Immunology, 46(3), 180–197. https://doi.org/10.1007/s12016-012-8336-9
  • Meiyan, L., & Qingsen, C. (2009). Optimization of fermentation conditions of lactobacillus helveticus for producing milk-derived ACE inhibitory peptides. Food Science, 30(21), 155–160.(in Chinese with English abstract)
  • Pascal, M., Grishina, G., Yang, A. C., Sánchez-GarcÍa, S., Lin, J., Towle, D., Ibañez, M. D., Sastre, J., Sampson, H. A., & Ayuso, R. (2015). Molecular diagnosis of shrimp allergy: Efficiency of several allergens to predict clinical reactivity. The Journal of Allergy and Clinical Immunology: In Practice, 3(4), 521–529.e10. https://doi.org/10.1016/j.jaip.2015.02.001
  • Rask, C., Adlerberth, I., Berggren, A., Ahrén, I. L., & Wold, A. E. (2013). Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli. Clinical and Experimental Immunology, 172(2), 321–332. https://doi.org/10.1111/cei.12055
  • Raveschot, C., Cudennec, B., Deracinois, B., Frémont, M., Vaeremans, M., Dugersuren, J., Demberel, s., Drider, D., Dhulster, P., Coutte, F., & Flahaut, C. (2020). Proteolytic activity of Lactobacillus strains isolated from Mongolian traditional dairy products: A multiparametric analysis. Food Chemistry, 304, 125415. https://doi.org/10.1016/j.foodchem.2019.125415
  • Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet UI Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. https://doi.org/10.3168/jds.2019-17092
  • Rizzello, C. G., De Angelis, M., Coda, R., & Gobbetti, M. (2006). Use of selected sourdough lactic acid bacteria to hydrolyze wheat and rye proteins responsible for cereal allergy. European Food Research and Technology, 223(3), 405–411. https://doi.org/10.1007/s00217-005-0220-x
  • Rodríguez-Serrano, G. M., García-Garibay, M., Cruz-Guerrero, A. E., Gómez-Ruiz, L., Ayala-Niño, A., Castañeda-Ovando, A., & González-Olivares, L. G. (2018). Proteolytic system of Streptococcus thermophilus. Journal of Microbiology and Biotechnology, 28(10), 1581–1588. https://doi.org/10.4014/jmb.1807.07017
  • Ruethers, T., Taki, A. C., Johnston, E. B., Nugraha, R., Le, T. T. K., Kalic, T., McLean, T. R., Kamath, S. D., & Lopata, A. L. (2018). Seafood allergy: A comprehensive review of fish and shellfish allergens. Molecular Immunology, 100, 28–57. https://doi.org/10.1016/j.molimm.2018.04.008
  • Shimakura, K., Tonomura, Y., Hamada, Y., Nagashima, Y., & Shiomi, K. (2005). Allergenicity of crustacean extractives and its reduction by protease digestion. Food Chemistry, 91(2), 247–253. https://doi.org/10.1016/j.foodchem.2003.11.010
  • Skrzypczak, K. W., Gustaw, W. Z., & Waśko, A. D. (2018). Distribution of cell envelope proteinases genes among Polish strains of Lactobacillus helveticus. Polish Journal of Microbiology, 67(2), 203–211. https://doi.org/10.21307/pjm-2018-026
  • Soemarie, Y. B., Milanda, T., & Barliana, M. I. (2021). Fermented foods as probiotics: A review. Journal of Advanced Pharmaceutical Technology & Research, 12(4), 335–339. https://doi.org/10.4103/japtr.japtr_116_21
  • Wang, W., Xia, W., Gao, P., & Xu Y. (2017). Sarcoplasmic protein hydrolysis activity of Lactobacillus plantarum 120 isolated from Suanyu: A traditional Chinese low salt fermented fish. Journal of Food Processing and Preservation, 41(2), e12821. https://doi.org/10.1111/jfpp.12821
  • Xie, Y., Shao, H., Hu, X., Hua, X., Meng, X., & Chen, H. (2021). Characterization of systemic allergenicity of tropomyosin from shrimp (Macrobrachium nipponense) and anaphylactic reactions in digestive tract. Journal of the Science of Food and Agriculture, 101(7), 2940–2949. https://doi.org/10.1002/jsfa.10926
  • Xingxuan, W., Zhihe, H., Lanyu, L., Lijuan, W., Lu, X., & Zijian, W. (2018). Combination of protein solubilization and denaturation under high hydrostatic pressure to reduce the allergenicity of shelled shrimp. Food Science, 39(5), 113–120. (in Chinese with English abstract). https://doi.org/10.7506/spkx1002-6630-201805018.
  • Yang, A., Zuo, L., Cheng, Y., Wu, Z., Li, X., Tong, P., & Chen, H. (2018). Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food & Function, 9(3), 1899–1909. https://doi.org/10.1039/c7fo01824j
  • Yu, A. Q., & Li, L. (2016). The potential role of probiotics in cancer prevention and treatment. Nutrition and Cancer, 68(4), 535–544. https://doi.org/10.1080/01635581.2016.1158300
  • Zhang, Z., Li, X. M., Xiao, H., Nowak-Wegrzyn, A., & Zhou, P. (2020). Insight into the allergenicity of shrimp tropomyosin glycated by functional oligosaccharides containing advanced glycation end products. Food Chemistry, 302, 125348. https://doi.org/10.1016/j.foodchem.2019.125348
  • Zhao, L., Xie, Q., Shi, F., Liang, S., Chen, Q., Evivie, S. E., Qiu, J., Li, B., & Huo, G. (2021). Proteolytic activities of combined fermentation with Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 reduce antigenic response to cow milk proteins. Journal of Dairy Science, 104(11), 11499–11508. https://doi.org/10.3168/jds.2021-20668
  • Zhenxing, L., Hong, L., Limin, C., & Jamil, K. (2007). The influence of gamma irradiation on the allergenicity of shrimp (Penaeus vannamei). Journal of Food Engineering, 79(3), 945–949. https://doi.org/10.1016/j.jfoodeng.2006.03.016
  • Zhong, Z., Hu, R., Zhao, J., Liu, W., Kwok, L. Y., Sun, Z., Zhang, H., & Chen, Y. (2021). Acetate kinase and peptidases are associated with the proteolytic activity of Lactobacillus helveticus isolated from fermented food. Food Microbiology, 94, 103651. https://doi.org/10.1016/j.fm.2020.103651