1,939
Views
69
CrossRef citations to date
0
Altmetric
Review Articles

Transcranial focused ultrasound: a new tool for non-invasive neuromodulation

& ORCID Icon
Pages 168-177 | Received 04 Feb 2017, Accepted 01 Mar 2017, Published online: 21 Apr 2017

References

  • Ai, L., Mueller, J.K., Grant, A., Eryaman, Y., & Legon, W. (2016). Transcranial focused ultrasound for BOLD fMRI signal modulation in humans. arXiv Preprint arXiv, 160300415. Retrieved from https://arxiv.org/abs/1603.00415
  • Bachtold, M.R., Rinaldi, P.C., Jones, J.P., Reines, F., & Price, L.R. (1998). Focused ultrasound modifications of neural circuit activity in a mammalian brain. Ultrasound in Medicine & Biology, 24, 557–565. doi: 10.1016/S0301-5629(98)00014-3
  • Bergfeld, I.O., Mantione, M., Hoogendoorn, M.C., Ruhé, H.G., Notten, P., van Laarhoven, J.,…. Denys, D. (2016). Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry, 73, 456–464.
  • Dalecki, D. (2004). Mechanical bioeffects of ultrasound. Annual Review of Biomedical Engineering, 6, 229–248. doi: 10.1146/annurev.bioeng.6.040803.140126
  • Deffieux, T., Younan, Y., Wattiez, N., Tanter, M., Pouget, P., & Aubry, J.-F. (2013). Low-intensity focused ultrasound modulates monkey visuomotor behavior. Current Biology, 23, 2430–2433. doi: 10.1016/j.cub.2013.10.029
  • Dougherty, D.D., Rezai, A.R., Carpenter, L.L., Howland, R.H., Bhati, M.T., O’reardon, J.P., … Malone, D.A. Jr. (2015). A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biological Psychiatry, 78, 240–248.
  • Elias, W.J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A pilot study of focused ultrasound thalamotomy for essential tremor. The New England Journal of Medicine, 369, 640–648.
  • Elias, W.J., Lipsman, N., Ondo, W.G., Ghanouni, P., Kim, Y.G., Lee, W., … Chang, J.W. (2016). A randomized trial of focused ultrasound thalamotomy for essential tremor. The New England Journal of Medicine, 375, 730–739.
  • Fry, F. (1958). Production of reversible changes in the central nervous system by ultrasound. Science, 127, 83–84.
  • Fry, W.J. (1956). Ultrasound in neurology. Neurology, 6, 693–704. doi: 10.1212/WNL.6.10.693
  • Fry, W.J. (1958). Use of intense ultrasound in neurological research. American Journal of Physical Medicine, 37, 143–147.
  • Harvey, E.N. (1929). The effect of high frequency sound waves on heart muscle and other irritable tissues. American Journal of Physiology, 91, 284–290.
  • Hertzberg, Y., Naor, O., Volovick, A., & Shoham, S. (2010). Towards multifocal ultrasonic neural stimulation: pattern generation algorithms. Journal of Neural Engineering, 7, 056002. doi: 10.1088/1741-2560/7/5/056002
  • Hynynen, K., & Clement, G. (2007). Clinical applications of focused ultrasound-the brain. International Journal of Hyperthermia, 23, 193–202. doi: 10.1080/02656730701200094
  • Hynynen, K., & Jolesz, F.A. (1998). Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound in Medicine & Biology, 24, 275–283. doi: 10.1016/S0301-5629(97)00269-X
  • Hynynen, K., & Jones, R.M. (2016). Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Physics in Medicine and Biology, 61, R206–R248. doi: 10.1088/0031-9155/61/17/R206
  • Ibsen, S., Tong, A., Schutt, C., Esener, S., & Chalasani, S.H. (2015). Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nature Communications, 6, 8264. doi: 10.1038/ncomms9264
  • Jung, H.H., Kim, S.J., Roh, D., Chang, J.G., Chang, W.S., Kweon, E.J., … Chang, J.W. (2015). Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Molecular Psychiatry, 20, 1205–1211.
  • Keedwell, P.A., & Linden, D.E. (2013). Integrative neuroimaging in mood disorders. Current Opinion in Psychiatry, 26, 27–32. doi: 10.1097/YCO.0b013e32835a0b63
  • King, R.L., Brown, J.R., Newsome, W.T., & Pauly, K.B. (2013). Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound in Medicine & Biology, 39, 312–331. doi: 10.1016/j.ultrasmedbio.2012.09.009
  • Krasovitski, B., Frenkel, V., Shoham, S., & Kimmel, E. (2011). Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proceedings of the National Academy of Sciences United States of America, 108, 3258–3263. doi: 10.1073/pnas.1015771108
  • Kubanek, J., Shi, J., Marsh, J., Chen, D., Deng, C., & Cui, J. (2016). Ultrasound modulates ion channel currents. Scientific Reports, 6, 24170. doi: 10.1038/srep24170
  • Lee, W., Kim, H., Jung, Y., Song, I.-U., Chung, Y.A., & Yoo, S.-S. (2015). Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Scientific Reports, 5, 8743. doi: 10.1038/srep08743
  • Lee, W., Kim, H.-C., Jung, Y., Chung, Y.A., Song, I.-U., Lee, J.-H., & Yoo, S.-S. (2016). Transcranial focused ultrasound stimulation of human primary visual cortex. Scientific Reports, 6, 34026.
  • Lee, W., Lee, S.D., Park, M.Y., Foley, L., Purcell-Estabrook, E., Kim, H., … Yoo, S.-S. (2016). Image-guided focused ultrasound-mediated regional brain stimulation in sheep. Ultrasound in Medicine & Biology, 42, 459–470.
  • Legon, W., Rowlands, A., Opitz, A., Sato, T.F., & Tyler, W.J. (2012). Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and FMRI. PLoS One, 7, e51177. doi: 10.1371/journal.pone.0051177
  • Legon, W., Sato, T.F., Opitz, A., Mueller, J., Barbour, A., Williams, A., & Tyler, W.J. (2014). Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature Neuroscience, 17, 322–329. doi: 10.1038/nn.3620
  • Li, G.-F., Zhao, H.-X., Zhou, H., Yan, F., Wang, J.-Y., Xu, C.-X., … Zheng, H.-R. (2016a). Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) Ultrasound. Scientific Reports, 6, 24738.
  • Li, G.F., Zhao, H.X., Zhou, H., Yan, F., Wang, J.Y., Xu, C.X., … Zheng, H.R. (2016b). Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound. Scientific Reports, 6, 24738.
  • Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8, 931–934. doi: 10.1038/nmat2561
  • Mace, E., Montaldo, G., Cohen, I., Baulac, M., Fink, M., & Tanter, M. (2011). Functional ultrasound imaging of the brain. Nature Methods, 8, 662–664. doi: 10.1038/nmeth.1641
  • McDannold, N., Zhang, Y., Power, C., Arvanitis, C.D., Vykhodtseva, N., & Livingstone, M. (2015). Targeted, noninvasive blockade of cortical neuronal activity. Scientific Reports, 5, 16253. doi: 10.1038/srep16253
  • Meairs, S. (2015). Facilitation of drug transport across the blood-brain barrier with ultrasound and microbubbles. Pharmaceutics, 7, 275–293. doi: 10.3390/pharmaceutics7030275
  • Mehic, E., Xu, J.M., Caler, C.J., Coulson, N.K., Moritz, C.T., & Mourad, P.D. (2014). Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS One, 9, e86939.
  • Melde, K., Mark, A.G., Qiu, T., & Fischer, P. (2016). Holograms for acoustics. Nature, 537, 518–522. doi: 10.1038/nature19755
  • Menz, M.D., Oralkan, Ö., Khuri-Yakub, P.T., & Baccus, S.A. (2013). Precise neural stimulation in the retina using focused ultrasound. Journal of Neuroscience, 33, 4550–4560.
  • Mihran, R.T., Barnes, F.S., & Wachtel, H. (1990). Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound in Medicine & Biology, 16, 297–309. doi: 10.1016/0301-5629(90)90008-Z
  • Morishita, T., Fayad, S.M., Higuchi, M.A., Nestor, K.A., & Foote, K.D. (2014). Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics, 11, 475–484. doi: 10.1007/s13311-014-0282-1
  • Mueller, J., Legon, W., Opitz, A., Sato, T.F., & Tyler, W.J. (2014). Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimulation, 7, 900–908. doi: 10.1016/j.brs.2014.08.008
  • Mueller, J.K., & Tyler, W.J. (2014). A quantitative overview of biophysical forces impinging on neural function. Physical Biology, 11, 051001. doi: 1478-3975/11/5/051001
  • Naor, O., Krupa, S., & Shoham, S. (2016). Ultrasonic neuromodulation. Journal of Neural Engineering, 13, 031003. doi: 10.1088/1741-2560/13/3/031003
  • O’Brien, W.D. Jr. (2007). Ultrasound-biophysics mechanisms. Progress in Biophysics and Molecular Biology, 93, 212–255.
  • O'Halloran, R., Kopell, B.H., Sprooten, E., Goodman, W.K., & Frangou, S. (2016). Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders. Frontiers in Psychiatry, 7, 63.
  • Omer, N., Yoni, H., Esther, Z., Eitan, K., & Shy, S. (2012). Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis. Journal of Neural Engineering, 9, 026006.
  • Opitz, A., Legon, W., Rowlands, A., Bickel, W.K., Paulus, W., & Tyler, W.J. (2013). Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage, 81, 253–264. doi: 10.1016/j.neuroimage.2013.04.067
  • Osmanski, B.F., Pezet, S., Ricobaraza, A., Lenkei, Z., & Tanter, M. (2014). Functional ultrasound imaging of intrinsic connectivity in the living rat brain with high spatiotemporal resolution. Nature Communications, 5, 5023. doi: 10.1038/ncomms6023
  • Parker, K.J., & Alonso, M.A. (2016). Longitudinal iso-phase condition and needle pulses. Optics Express, 24, 28669–28677. doi: 10.1364/OE.24.028669
  • Plaksin, M., Kimmel, E., & Shoham, S. (2016). Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation. eNeuro, 3, 1–16. doi: 10.1523/ENEURO.0136-15.2016
  • Prieto, M.L., Oralkan, Ö., Khuri-Yakub, B.T., & Maduke, M.C. (2013). Dynamic response of model lipid membranes to ultrasonic radiation force. PLoS One, 8, e77115.
  • Rinaldi, P.C., Jones, J.P., Reines, F., & Price, L.R. (1991). Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation. Brain Research, 558, 36–42. doi: 10.1016/0006-8993(91)90711-4
  • Rodriguez, A., Tatter, S.B., & Debinski, W. (2015). Neurosurgical techniques for disruption of the blood-brain barrier for glioblastoma treatment. Pharmaceutics, 7, 175–187. doi: 10.3390/pharmaceutics7030175
  • Spadoni, A., & Daraio, C. (2010). Generation and control of sound bullets with a nonlinear acoustic lens. Proceedings of the National Academy of Sciences United States of America, 107, 7230–7234. doi: 10.1073/pnas.1001514107
  • Tsui, P.H., Wang, S.H., & Huang, C.C. (2005). In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics, 43, 560–565. doi: 10.1016/j.ultras.2004.12.003
  • Tufail, Y., Matyushov, A., Baldwin, N., Tauchmann, M.L., Georges, J., Yoshihiro, A., … Tyler, W.J. (2010). Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 66, 681–694.
  • Tufail, Y., Yoshihiro, A., Pati, S., Tauchmann, M.L., & Tyler, W.J. (2011). Ultrasonic Neuromodulation by Brain Stimulation with Transcranial Ultrasound. Nature Protocols, 6, 1453–1470. doi: 10.1038/nprot.2011.371
  • Tyler, W.J. (2011). Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist, 17, 25–36. doi: 10.1177/1073858409348066
  • Tyler, W.J. (2012). The mechanobiology of brain function. Nature Reviews Neuroscience, 13, 867–878. doi: 10.1038/nrn3383
  • Tyler, W.J., Tufail, Y., Finsterwald, M., Tauchmann, M.L., Olson, E.J., & Majestic, C. (2008). Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One, 3, e3511. doi: 10.1371/journal.pone.0003511
  • Wang, S., Olumolade, O.O., Sun, T., Samiotaki, G., & Konofagou, E.E. (2015). Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Therapy, 22, 104–110. doi: 10.1038/gt.2014.91
  • Yang, P.S., Kim, H., Lee, W., Bohlke, M., Park, S., Maher, T.J., & Yoo, S.-S. (2012). Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology, 65, 153–160. doi: 10.1159/000336001
  • Yang, S., Xing, D., Zhou, Q., Xiang, L., & Lao, Y. (2007). Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Medical Physics, 34, 3294–3301. doi: 10.1118/1.2757088
  • Yang, X., & Wang, L.V. (2008). Monkey brain cortex imaging by photoacoustic tomography. Journal of Biomedical Optics, 13, 044009. doi: 10.1117/1.2967907
  • Yoo, S.S., Bystritsky, A., Lee, J.H., Zhang, Y., Fischer, K., Min, B.K., …\ & Jolesz, F.A. (2011). Focused ultrasound modulates region-specific brain activity. Neuroimage, 56, 1267–1275. doi: 10.1016/j.neuroimage.2011.02.058
  • Zhang, S., Yin, L., & Fang, N. (2009). Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters, 102, 194301–194304. doi: 10.1103/PhysRevLett.102.194301

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.