734
Views
44
CrossRef citations to date
0
Altmetric
Review Articles

The development and modelling of devices and paradigms for transcranial magnetic stimulation

&
Pages 115-145 | Received 12 Oct 2016, Accepted 09 Mar 2017, Published online: 26 Apr 2017

References

  • Agudelo-Toro, A., & Neef, A. (2013). Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. Journal of Neural Engineering, 10, 026019. doi: 10.1088/1741-2560/10/2/026019
  • Al-Mutawaly, N., & de Bruin, H. (2001). Designing and constructing a magnetic stimulator: theoretical and practical considerations. Proceedings of IEEE Engineering in Medicine and Biology Society, 23, 881–884. doi: 10.1109/IEMBS.2001.1019083
  • Al-Mutawaly, N., & Findlay, R.D. (1998). A novel coil design for magnetic nerve stimulation. Proceedings of IEEE Canadian Journal of Electrical and Computer Engineering, 2, 669–672. doi: 10.1109/CCECE.1998.685585
  • Alavi, S.M.M., Goetz, S.M., & Peterchev, A.V. (2016). Fast curve fitting using optimal sampling. Under review.
  • Aleman, A. (2013). Use of repetitive transcranial magnetic stimulation for treatment in psychiatry. Clinical Psychopharmacology and Neuroscience, 11, 53–59. doi: 10.9758/cpn.2013.11.2.53
  • Antal, A., Kincses, T.Z., Nitsche, M.A., Bartfai, O., Demmer, I., Sommer, M., & Paulus, W. (2002). Pulse configuration-dependent effects of repetitive transcranial magnetic stimulation on visual perception. NeuroReport, 13, 2229–2223. doi: 10.1097/01.wnr.0000044216.09266.64
  • Arai, N., Okabe, S., Furubayashi, T., Mochizuki, H., Iwata, N.K., Hanajima, R., … Ugawa, Y. (2007). Differences in after-effect between monophasic and biphasic high-frequency rTMS of the human motor cortex. Clinical Neurophysiology, 118, 2227–2233. doi: 10.1016/j.clinph.2007.07.006
  • Arai, N., Okabe, S., Furubayashi, T., Terao, Y., Yuasa, K., & Ugawa, Y. (2005). Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex. Clinical Neurophysiology, 116, 605–613. doi: 10.1016/j.clinph.2004.09.020
  • Babyak, M.A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66, 411–421. doi: 10.1097/00006842-200405000-00021
  • Badcock, R.A., Long, N.J., Mulholland, M., Hellmann, S., Wright, A., & Hamilton, K.A. (2009). Progress in the Manufacture of Long Length YBCO Roebel Cables. IEEE Transactions on Applied Superconductivity, 19, 3244–3247. doi: 10.1109/TASC.2009.2019065
  • Baker, M., Bostock, H., Grafe, P., & Martius, P. (1987). Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. The Journal of Physiology, 383, 45–67. doi: 10.1113/jphysiol.1987.sp016395
  • Balslev, D., Braet, W., McAllister, C., & Miall, R.C. (2007). Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex. Journal of Neuroscience Methods, 162, 309–313. doi: 10.1016/j.jneumeth.2007.01.021
  • Barker, A.T. (1991). An introduction to the basic principles of magnetic nerve stimulation. Journal of Clinical Neurophysiology, 8, 26–37. doi: 10.1097/00004691-199101000-00005
  • Barker, A.T. The Magstim Company Ltd. (2001). Stimulators and stimulating coils for magnetically stimulating neuro-muscular tissue. US 6,663,556. US Patent and Trademark Office.
  • Barker, A.T., Jalinous, R., & Freeston, I.L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, 1, 1106–1107. doi: 10.1016/S0140-6736(85)92413-4
  • Basso, V., Berlotti, G., Infortuna, A., & Pasquale, M. (1995). Preisach model study of the connection between magnetic and microstructural properties of soft magnetic materials. IEEE Transactions on Magnetics, 31, 4000–4005. doi: 10.1109/20.489843
  • Beaulieu, C. (1993). Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Research, 609, 284–292. doi: 10.1016/0006-8993(93)90884-P
  • Beck, R., Hiptmar, R., & Wohlmoth, B. (2000). Hierarchical error estimator for eddy current computation. In: P. Neittaanmäki, & T. Tiihonen, (Eds.), ENUMATH 99?Proceedings of the 3rd European Conference on numerical mathematics and advanced applications, Jyväskylä, Finland, July 26?30, 2000 (pp. 110–120). Singapore: World Scientific.
  • Bender, K.J., & Trussell, L.O. (2012). The physiology of the axon initial segment. Annual Review of Neuroscience, 35, 249–265. doi: 10.1146/annurev-neuro-062111-150339
  • Bennie, S.D., Petrofsky, J.S., Nisperos, J., Tsurudome, M., & Laymon, M. (2002). Toward the optimal waveform for electrical stimulation of human muscle. European Journal of Applied Physiology, 88, 13–19. doi: 10.1007/s00421-002-0711-4
  • Bertotti, G. (1988). General properties of power losses in soft ferromagnetic materials. IEEE Transactions on Magnetics, 24, 621–630. doi: 10.1109/20.43994
  • Bertotti, G. (1992). Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Transactions on Magnetics, 28, 2599–2601. doi: 10.1109/20.179569
  • Bertotti, G., Basso, V., & Pasquale, M. (1994). Application of the Preisach model to the calculation of magnetization curves and power losses in ferromagnetic materials. IEEE Transactions on Magnetics, 30, 1052–1057. doi: 10.1109/20.312492
  • Bestmann, S., Baudewig, J., Siebner, H.R., Rothwell, J.C., & Frahm, J. (2005). BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage, 28, 22–29. doi: 10.1016/j.neuroimage.2005.05.027
  • Beyzavi, A., & Nguyen, N.-T. (2008). Modeling and optimization of planar microcoils. Journal of Micromechanics and Microengineering, 18, 095018. doi: 10.1088/0960-1317/18/9/095018
  • Bijsterbosch, J.D., Barker, A.T., Lee, K.-H., & Woodruff, P.W.R. (2012). Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Medical & Biological Engineering & Computing, 50, 671–681. doi: 10.1007/s11517-012-0922-8
  • Biro, O., & Preis, K. (1990). Finite element analysis of 3-D eddy currents. IEEE Transactions on Magnetics, 26, 418–423. doi: 10.1109/20.106343
  • Biro, O., Preis, K., Buchgraber, G., & Ticar, I. (2004). Voltage-driven coils in finite-element formulations using a current vector and a magnetic scalar potential. IEEE Transactions on Magnetics, 40, 1286–1289. doi: 10.1109/TMAG.2004.825428
  • Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., & Vinokur, V.M. (1994). Vortices in high-temperature superconductors. Reviews of Modern Physics, 66, 1125–1388. doi: 10.1103/RevModPhys.66.1125
  • Boglietti, A., Cavagnino, A., Lazzari, M., & Pastorelli, M. (2003). Predicting iron losses in soft magnetic materials with arbitrary voltage supply: An engineering approach. IEEE Transactions on Magnetics, 39, 981–989. doi: 10.1109/TMAG.2003.808599
  • Bohning, D.E., Shastri, A., McConnell, K.A., Nahas, Z., Lorberbaum, J.P., Roberts, D.R., … George, M.S. (1999). A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biological Psychiatry, 45, 385–394. doi: 10.1016/S0006-3223(98)00368-0
  • Boroojerdi, B., Battaglia, F., Muellbacher, W., & Cohen, L.G. (2001). Mechanisms influencing stimulus-response properties of the human corticospinal system. Clinical Neurophysiology, 112, 931–937. doi: 10.1016/S1388-2457(01)00523-5
  • Bossetti, C.A., Birdno, M.J., & Grill, W.M. (2008). Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation. Journal of Neural Engineering, 5, 44–53. doi: 10.1088/1741-2560/5/1/005
  • Bostock, H. (1983). The strength-duration relationship for excitation of myelinated nerve: Computed dependence on membrane parameters. The Journal of Physiology, 341, 59–74. doi: 10.1113/jphysiol.1983.sp014792
  • Brouwer, B., & Qiao, J. (1995). Characteristics and variability of lower limb motoneuron responses to transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 97, 49–54. doi: 10.1016/0924-980X(94)00265-9
  • Brunel, N., & van Rossum, M.C.W. (2007). Lapicque's 1907 paper: from frogs to integrate-and-fire. Biological Cybernetics, 97, 337–339. doi: 10.1007/s00422-007-0190-0
  • Buetikofer, R., & Lawrence, P.D. (1978). Electrocutaneous nerve stimulation-I: Model and experiment. IEEE Transactions on Biomedical Engineering, 25, 526–531. doi: 10.1109/TBME.1978.326286
  • Buetikofer, R., & Lawrence, P.D. (1979). Electrocutaneous nerve stimulation-II: Stimulus Waveform selection. IEEE Transactions on Biomedical Engineering, 26, 69–75. doi: 10.1109/TBME.1979.326529
  • Bugoslavsky, Y., Cohen, L.F., Perkins, G.K., Polichetti, M., Tate, T.J., Gwilliam, R., & Caplin, A.D. (2001). Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation. Nature, 411, 561–563. doi: 10.1038/35079024
  • Bustamante, V., López de Santamaría, E., Marina, N., Gorostiza, A., Fernández, Z., & Gáldiz, J. (2013). Neuromuscular magnetic stimulation of the quadriceps muscle after COPD exacerbations. European Respiratory Journal, 42(Suppl 57), P3572.
  • Bustamante, V.M., Gorostiza, A.M., López de Santa María Miró, E., & Iturri, J.B.G. (2007). Magnetic stimulation of the quadriceps: Analysis of 2 stimulators used for diagnostic and therapeutic applications. Archivos De Bronconeumología (English Edition), 43, 411–417.
  • Cadwell, J. (1991). Optimizing magnetic stimulator design. Electroencephalography and Clinical Neurophysiology, Supplement, 43, 238–248.
  • Caramia, M.D., Cicinelli, P., Paradiso, C., Mariorenzi, R., Zarola, F., Bernardi, G., & Rossini, P.M. (1991). ‘Excitability’ changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 81, 243–250.
  • Carroll, T.J., Riek, S., & Carson, R.G. (2001). Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. Journal of Neuroscience Methods, 112, 193–202. doi: 10.1016/S0165-0270(01)00468-X
  • Cerri, G., De Leo, R., Moglie, F., & Schiavoni, A. (1995). An accurate 3-D model for magnetic stimulation of the brain cortex. Journal of Medical Engineering & Technology, 19, 7–16. doi: 10.3109/03091909509030264
  • Chen, M., & Mogul, D.J. (2009). A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation. Journal of Neuroscience Methods, 179, 111–120. doi: 10.1016/j.jneumeth.2009.01.010
  • Claus, D., Murray, N.M.F., Spitzer, A., & Flügel, D. (1990). The influence of stimulus type on the magnetic excitation of nerve structures. Electroencephalography and Clinical Neurophysiology, 75, 342–349.
  • Clemens, M., Wilke, M., & Weiland, T. (2001). Advanced FI2TD algorithms for transient eddy current problems. COMPEL – the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 20, 365–379. doi: 10.1108/03321640110383267
  • Cohen, L.G., Roth, B.J., Nilsson, J., Dang, N., Panizza, M., Bandinelli, S., … Hallett, M. (1990). Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalography and Clinical Neurophysiology, 75, 350–357. doi: 10.1016/0013-4694(90)90113-X
  • Comeau, R. (2014). Neuronavigation for transcranial magnetic stimulation. In A. Rotenberg, C.J., Horvath, & A. Pascual-Leone (Eds.), Transcranial magnetic stimulation (pp. 31–56). New York, NY: Springer New York. doi: 10.1007/978-1-4939-0879-0_3
  • Cona, F., Zavaglia, M., Massimini, M., Rosanova, M., & Ursino, M. (2011). A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG. NeuroImage, 57, 1045–1058. doi: 10.1016/j.neuroimage.2011.05.007
  • Corthout, E., Barker, A., & Cowey, A. (2001). Transcranial magnetic stimulation. Which part of the current waveform causes the stimulation? Experimental Brain Research, 141, 128–132. doi: 10.1007/s002210100860
  • Counter, S.A. (1994). Auditory brainstem and cortical responses following extensive transcranial magnetic stimulation. Journal of the Neurological Sciences, 124, 163–170. doi: 10.1016/0022-510X(94)90322-0
  • Counter, S.A., & Borg, E. (1992). Analysis of the coil generated impulse noise in extracranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 85, 280–288. doi: 10.1016/0168-5597(92)90117-T
  • Counter, S.A., Borg, E., & Lofqvist, L. (1991). Acoustic trauma in extracranial magnetic brain stimulation. Electroencephalography and Clinical Neurophysiology, 78, 173–184. doi: 10.1016/0013-4694(91)90031-X
  • Crowther, L.J., Marketos, P., Williams, P.I., Melikhov, Y., Jiles, D.C., & Starzewski, J.H. (2011). Transcranial magnetic stimulation: Improved coil design for deep brain investigation. Journal of Applied Physics, 109, 07B314. doi: 10.1063/1.3563076
  • d'Aloja, G., Lino, P., Maione, B., & Rizzo, A. (2005). Nonlinear modeling of brain motor waves via transcranial magnetic stimulation. IEEE Proc. Conf. on Decision and Control, 44, 4833–4938. doi: 10.1109/CDC.2005.1582926
  • D’Ostilio, K., Goetz, S.M., Ciocca, M., Chieffo, R., Chen, J.-C.A., Peterchev, A.V., & Rothwell, J.C. (2014). Effect of coil orientation on strength-duration time constant with controllable pulse parameter transcranial magnetic stimulation. Clinical Neurophysiology, 125 (Suppl. 1), S123. doi: 10.1016/S1388-2457(14)50400-2
  • D’Ostilio, K., Goetz, S.M., Hannah, R., Ciocca, M., Chieffo, R., Chen, J.C., … Rothwell, J.C. (2016). Effect of coil orientation on strength–duration time constant and I-wave activation with controllable pulse parameter transcranial magnetic stimulation. Clinical Neurophysiology, 127, 675–683. doi: 10.1016/j.clinph.2015.05.017
  • d’Aloja, G., Lino, P., Maione, B., & Rizzo, A. (2007). Modeling of motor neuronal structures via transcranial magnetic stimulation. In J. Filipe, J.-L. Ferrier, J.A. Cetto, & M. Carvalho (Eds.), Informatics in control, automation and robotics II (pp. 191–197). Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-5626-0_23
  • Darling, W.G., Wolf, S.L., & Butler, A.J. (2006). Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Experimental Brain Research, 174, 376–385. doi: 10.1007/s00221-006-0468-9
  • Davey, K., & Epstein, C.M. (2000). Magnetic stimulation coil and circuit design. IEEE Transactions on Biomedical Engineering, 47, 1493–1499. doi: 10.1109/10.880101
  • Davey, K., Epstein, C.M., George, M.S., & Bohning, D.E. (2003). Modeling the effects of electrical conductivity of the head on the induced electric field in the brain during magnetic stimulation. Clinical Neurophysiology, 114, 2204–2209. doi: 10.1016/S1388-2457(03)00240-2
  • Davey, K., & Riehl, M. (2005). Designing transcranial magnetic stimulation systems. IEEE Transactions on Magnetics, 41, 1142–1148. doi: 10.1109/TMAG.2004.843326
  • Davey, K.R., & Riehl, M.E. (2006). Suppressing the surface field during transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 53, 190–194. doi: 10.1109/TBME.2005.862545
  • de Boer, R., Vrooman, H.A., Ikram, M.A., Vernooij, M.W., Breteler, M.M.B., van der Lugt, A., & Niessen, W.J. (2010). Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. NeuroImage, 51, 1047–1056. doi: 10.1016/j.neuroimage.2010.03.012
  • De Geeter, N., Crevecoeur, G., & Dupre, L. (2011). An efficient 3-D Eddy-current solver using an independent impedance method for transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 58, 310–320. doi: 10.1109/TBME.2010.2087758
  • De Geeter, N., Crevecoeur, G., Dupré, L., Van Hecke, W., & Leemans, A. (2012). A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters. Physics in Medicine and Biology, 57, 2169. doi: 10.1088/0031-9155/57/8/2169
  • De Geeter, N., Crevecoeur, G., Leemans, A., & Dupré, L. (2015). Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS. Physics in Medicine and Biology, 60, 453. doi: 10.1088/0031-9155/60/2/453
  • De Lucia, M., Parker, G.J.M., Embleton, K., Newton, J.M., & Walsh, V. (2007). Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation. NeuroImage, 36, 1159–1170. doi: 10.1016/j.neuroimage.2007.03.062
  • Dean, D., & Lawrence, P.D. (1985). Optimization of neural stimuli based upon a variable threshold potential. IEEE Transactions on Biomedical Engineering, BME-32, 8–14. doi: 10.1109/TBME.1985.325644
  • Deng, Z.-D., Lisanby, S.H., & Peterchev, A.V. (2011). Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: A finite element simulation study. Journal of Neural Engineering, 8, 016007. doi: 10.1088/1741-2560/8/1/016007
  • Deng, Z.-D., Lisanby, S.H., & Peterchev, A.V. (2013). Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation, 6, 1–13. doi: 10.1016/j.brs.2012.02.005
  • Deng, Z.-D., Lisanby, S.H., & Peterchev, A.V. (2014). Coil design considerations for deep transcranial magnetic stimulation. Clinical Neurophysiology, 125, 1202–1212. doi: 10.1016/j.clinph.2013.11.038
  • Deng, Z.-D., Lisanby, S.H., & Peterchev, A.V. (2015). Effect of anatomical variability on electric field characteristics of electroconvulsive therapy and magnetic seizure therapy: A parametric modeling study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23, 22–31. doi: 10.1109/TNSRE.2014.2339014
  • Deng, Z.-D., Peterchev, A.V., & Lisanby, S.H. (2008). Coil design considerations for deep-brain transcranial magnetic stimulation (dTMS). Proceedings of IEEE Engineering in Medicine and Biology Society, 30, 5675–5679. doi: 10.1109/IEMBS.2008.4650502
  • Devanne, H., Lavoie, A.B., & Capaday, C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research, 114, 329–338. doi: 10.1007/PL00005641
  • Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Mazzone, P., … Rothwell, J.C. (2004). The physiological basis of transcranial motor cortex stimulation in conscious humans. Clinical Neurophysiology, 115, 255–266. doi: 10.1016/j.clinph.2003.10.009
  • Di Lazzaro, V., Profice, P., Ranieri, F., Capone, F., Dileone, M., Oliviero, A., & Pilato, F. (2012). I-wave origin and modulation. Brain Stimulation, 5, 512–525. doi: 10.1016/j.brs.2011.07.008
  • Di Lazzaro, V., Ziemann, U., & Lemon, R.N. (2008). State of the art: Physiology of transcranial motor cortex stimulation. Brain Stimulation, 1, 345–362. doi: 10.1016/j.brs.2008.07.004
  • Drummond, C., & Japkowicz, N. (2010). Warning: Statistical benchmarking is addictive. Kicking the habit in machine learning. Journal of Experimental & Theoretical Artificial Intelligence, 22, 67–80. doi: 10.1080/09528130903010295
  • Durand, D., Ferguson, A.S., & Dalbasti, T. (1989). Induced electric fields by magnetic stimulation in non-homogeneous conducting media. Proceedings of IEEE Engineering in Medicine and Biology Society, 11, 1252–1253. doi: 10.1109/IEMBS.1989.96179
  • Eggert, L.D., Sommer, J., Jansen, A., Kircher, T., & Konrad, C. (2012). Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One, 7, e45081. doi: 10.1371/journal.pone.0045081
  • Eldaief, M.C., Press, D.Z., & Pascual-Leone, A. (2013). Transcranial magnetic stimulation in neurology: A review of established and prospective applications. Neurology Clinical Practice, 3, 519–526. doi: 10.1212/01.CPJ.0000436213.11132.8e
  • Ellaway, P.H., Davey, N.J., Maskill, D.W., Rawlinson, S.R., Lewis, H.S., & Anissimova, N.P. (1998). Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 109, 104–113. doi: 10.1016/S0924-980X(98)00007-1
  • Emrich, D., Fischer, A., Altenhöfer, C., Weyh, T., Helling, F., Goetz, S., … Matiasek, K. (2012). Muscle force development after low-frequency magnetic burst stimulation in dogs. Muscle & Nerve, 46, 951–953. doi: 10.1002/mus.23523
  • Epstein, C.M., & Davey, K.R. (1994). Emory University. Apparatus and method for transcranial magnetic brain stimulation, including the treatment of depression and the localization and characterization of speech arrest. US 6,425,852. United States Patent and Trademark Office.
  • Epstein, C.M., & Davey, K.R. (2002). Iron-core coils for transcranial magnetic stimulation. Journal of Clinical Neurophysiology, 19, 376–381. doi: 10.1097/00004691-200208000-00010
  • Esselle, K.P., & Stuchly, M.A. (1992). Neural stimulation with magnetic fields: Analysis of induced electric fields. IEEE Transactions on Biomedical Engineering, 39, 693–700. doi: 10.1109/10.142644
  • Esser, S.K., Hill, S.L., & Tononi, G. (2005). Modeling the effects of transcranial magnetic stimulation on cortical circuits. Journal of Neurophysiology, 94, 622–639. doi: 10.1152/jn.01230.2004
  • Fang, Z.P., & Mortimer, J.T. (1991). Selective activation of small motor axons by quasitrapezoidal current pulses. IEEE Transactions on Biomedical Engineering, 38, 168–174. doi: 10.1109/10.76383
  • Fanjul-Vélez, F., Salas-García, I., Ortega-Quijano, N., & Arce-Diego, J.L. (2015). FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders. Computer Methods and Programs in Biomedicine, 118, 34–43. doi: 10.1016/j.cmpb.2014.10.008
  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445–466. doi: 10.1016/S0006-3495(61)86902-6
  • Freeman, S.A., Desmazières, A., Fricker, D., Lubetzki, C., & Sol-Foulon, N. (2016). Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cellular and Molecular Life Sciences, 73, 723–735. doi: 10.1007/s00018-015-2081-1
  • Friedman, A., Wolfus, S., Yeshurun, Y., & Bar-Haim, Z. (2004). Bar Ilan University, Ricor Cryogenic & Vacuum Systems. Method for manufacturing superconducting coils. US 11/239,380, US Patent and Trademark Office.
  • Fung, P.K., Haber, A.L., & Robinson, P.A. (2013). Neural field theory of plasticity in the cerebral cortex. Journal of Theoretical Biology, 318, 44–57. doi: 10.1016/j.jtbi.2012.09.030
  • Gabriel, C., Peyman, A., & Grant, E.H. (2009). Electrical conductivity of tissue at frequencies below 1 MHz. Physics in Medicine and Biology, 54, 4863. doi: 10.1088/0031-9155/54/16/002
  • Gabriel, S., Lau, R.W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41, 2251. doi: 10.1088/0031-9155/41/11/002
  • Ge, S., Wang, J.-P., Tang, H.-Y., Xiao, X., & Wu, W. (2012). A design of array transcranial magnetic stimulation coil system. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 6, 160–163.
  • Gentet, L.J., Stuart, G.J., & Clements, J.D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320. doi: 10.1016/S0006-3495(00)76293-X
  • Ghiron, K.M., & Riehl, M.E. (2005). Neuronetics, Inc. Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators. US 7,396,326. US Patent and Trademark Office.
  • Ghiron, K.M., Riehl, M.E., & Shipway, I.M. (2014). Neuronetics, Inc Magnetic stimulation coils and ferromagnetic components for reduced surface stimulation and improved treatment depth. US 2015/196,772. US Patent and Trademark Office.
  • Gilbert, T.L. (2004). A phenomenological theory of damping in ferromagnetic materials. IEEE Transactions on Magnetics, 40, 3443–3449. doi: 10.1109/TMAG.2004.836740
  • Goetz, S.M., Afinowi, I.A., Herzog, H.-G., & Weyh, T. (2013a). Coil design for neuromuscular magnetic stimulation based on a detailed 3D thigh model. IEEE Transaction on Magnetics, 50, 1–10. doi: 10.1109/TMAG.2014.2300441
  • Goetz, S.M., Herzog, H.G., Gattinger, N., & Gleich, B. (2011a). Comparison of coil designs for peripheral magnetic muscle stimulation. Journal of Neural Engineering, 8, 056007. doi: 10.1088/1741-2560/8/5/056007
  • Goetz, S.M., Li, Z., Liang, X., Zhang, C., Lukic, S., & Peterchev, A.V. (2016a). Sensorless scheduling of the modular multilevel series-parallel converter: enabling a flexible, efficient, modular battery. IEEE Applied Power Electronics Conference APEC, 2349–2354. doi: 10.1109/APEC.2016.7468193
  • Goetz, S.M., Lisanby, S.H., Murphy, D.L.K., Price, R.J., O’Grady, G., & Peterchev, A.V. (2015a). Impulse noise of transcranial magnetic stimulation: measurement, safety, and auditory neuromodulation. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 8, 161–163. doi: 10.1016/j.brs.2014.10.010
  • Goetz, S.M., Luber, B., Lisanby, S.H., Murphy, D.L., Kozyrkov, C.I., Grill, W.M., … Peterchev, A.V. (2016b). Enhancement of neuromodulation with novel pulse shapes generated by controllable pulse parameter transcranial magnetic stimulation. Brain Stimulation, 9, 39–47. doi: 10.1016/j.brs.2015.08.013
  • Goetz, S.M., Luber, B., Lisanby, S.H., & Peterchev, A.V. (2014a). A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimulation, 7, 541–552. doi: 10.1016/j.brs.2014.03.002
  • Goetz, S.M., Murphy, D.L.K., & Peterchev, A.V. (2014b). Transcranial Magnetic Stimulation Device With Reduced Acoustic Noise. IEEE Magnetics Letters, 5, 1–4. doi: 10.1109/LMAG.2014.2351776
  • Goetz, S.M., & Peterchev, A.V. (2012). A model of variability in brain stimulation evoked responses. Proceedings of IEEE Engineering in Medicine and Biology Society, 34, 6434–6437. doi: 10.1109/EMBC.2012.6347467
  • Goetz, S.M., Peterchev, A.V., & Weyh, T. (2015b). Modular multilevel converter with series and parallel module connectivity: Topology and control. IEEE Transactions on Power Electronics, 30, 203–215. doi: 10.1109/TPEL.2014.2310225
  • Goetz, S.M., Pfaeffl, M., Huber, J., Singer, M., Marquardt, R., & Weyh, T. (2012a). Circuit topology and control principle for a first magnetic stimulator with fully controllable waveform. Proceedings of IEEE Engineering in Medicine and Biology Society, 34, 4700–4703. doi: 10.1109/EMBC.2012.6347016
  • Goetz, S.M., Truong, C.N., Gerhofer, M.G., Peterchev, A.V., Herzog, H.-G., & Weyh, T. (2013b). Analysis and optimization of pulse dynamics for magnetic stimulation. PLoS One, 8, e55771. doi: 10.1371/journal.pone.0055771
  • Goetz, S.M., Truong, N.C., Gerhofer, M.G., Peterchev, A.V., Herzog, H., & Weyh, T., (2012b). Optimization of magnetic neurostimulation waveforms for minimum power loss. Proceedings of IEEE Engineering in Medicine and Biology Society, 34, 4652–4655. doi: 10.1109/EMBC.2012.6347004
  • Goetz, S.M., Weyh, T., & Herzog, H.G. (2009). Analysis of a novel magnetic stimulation system: Magnetic harmonic multi-cycle stimulation (MHMS). Proceedings of IEEE Transactions on Biomedical Engineering, 1–6. doi: 10.1109/ICBPE.2009.5384111
  • Goetz, S.M., Whiting, P., & Peterchev, A.V. (2011b). Threshold estimation with transcranial magnetic stimulation: Algorithm comparison. Clinical Neurophysiology, 122, 197. doi: 10.1016/S1388-2457(11)60712-8
  • Golestanirad, L., Mattes, M., Mosig, J.R., & Pollo, C. (2010). Effect of model accuracy on the result of computed current densities in the simulation of transcranial magnetic stimulation. IEEE Transactions on Magnetics, 46, 4046–4051. doi: 10.1109/TMAG.2010.2082556
  • Gomez, L., Cajko, F., Hernandez-Garcia, L., Grbic, A., & Michielssen, E. (2013). Numerical analysis and design of single-source multicoil TMS for deep and focused brain stimulation. IEEE Transactions on Biomedical Engineering, 60, 2771–2782. doi: 10.1109/TBME.2013.2264632
  • Gomez, L.J., Yücel, A.C., Hernandez-Garcia, L., Taylor, S.F., & Michielssen, E., (2015). Uncertainty quantification in transcranial magnetic stimulation via high-dimensional model representation. IEEE Transactions on Biomedical Engineering, 62, 361–372. doi: 10.1109/TBME.2014.2353993
  • Goodwin, B.D., & Butson, C.R. (2015). Subject-specific multiscale modeling to investigate effects of transcranial magnetic stimulation. Neuromodulation: Technology at the Neural Interface, 18, 694–704. doi: 10.1111/ner.12296
  • Gorman, P.H., & Mortimer, J.T. (1983). the effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Transactions on Biomedical Engineering, 30, 407–414. doi: 10.1109/TBME.1983.325041
  • Grill, W.M., & Mortimer, J.T. (1995). Stimulus waveforms for selective neural stimulation. IEEE Engineering in Medicine and Biology Magazine, 14, 375–385. doi: 10.1109/51.395310
  • Gugino, L.D., Rafael Romero, J., Aglio, L., Titone, D., Ramirez, M., Pascual-Leone, A., … Shenton, M.E (2001). Transcranial magnetic stimulation coregistered with MRI: A comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clinical Neurophysiology, 112, 1781–1792.
  • Guidi, M., Scarpino, O., Angeleri, F., Antili, R., & Leo, R.D. (1989). Brain cortex stimulation by using magnetic pulses: analysis of the induced current distribution by means of a computer simulated model. Proceedings of IEEE Engineering in Medicine and Biology Society, 11, 1169–1171. doi: 10.1109/IEMBS.1989.96143
  • Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., & Liu, J.P., (2011). Magnetic materials and devices for the 21st Century: Stronger, lighter, and more energy efficient. Advanced Materials, 23, 821–842. doi: 10.1002/adma.201002180
  • Haiji, H., Okada, K., Hiratani, T., Abe, M., & Ninomiya, M., (1996). Magnetic properties and workability of 6.5% Si steel sheet. Journal of Magnetism and Magnetic Materials, 160, 109–114. doi: 10.1016/0304-8853(96)00128-X
  • Han, B.H., Chun, I.K., Lee, S.C., & Lee, S.Y. (2004). Multichannel magnetic stimulation system design considering mutual couplings among the stimulation coils. IEEE Transactions on Biomedical Engineering, 51, 812–817. doi: 10.1109/TBME.2004.824123
  • Hannah, R., Ciocca, M., Sommer, M., Hammond, P., & Rothwell, J.C. (2014). Continuous theta burst stimulation with monophasic pulses: Effect of current direction. Clinical Neurophysiology, 125, S332–S333. doi: 10.1016/S1388-2457(14)51096-6
  • Havel, W.J., Nyenhuis, J.A., Bourland, J.D., Foster, K.S., Geddes, L.A., Graber, G.P., … Schaefer, D.J. (1997). Comparison of rectangular and damped sinusoidal dB/dt waveforms in magnetic stimulation. IEEE Transactions on Magnetics, 33, 4269–4271. doi: 10.1109/20.619732
  • Hawkins, D.M., & Kraker, J. (2010). Deterministic fallacies and model validation. Journal of Chemometrics, 24, 188–193. doi: 10.1002/cem.1311
  • He, Z.Z., & Liu, J. (2016). Anisotropic subvoxel-smooth conduction model for bioelectromagnetism analysis. Journal of Applied Physics, 119, 024701. doi: http://dx.doi.org/10.1063/1.4939774
  • Heller, L., & van Hulsteyn, D.B., (1992). Brain stimulation using electromagnetic sources: Theoretical aspects. Biophysical Journal, 63, 129–138. doi: 10.1016/S0006-3495(92)81587-4
  • Hindmarsh, J.L., & Rose, R.M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London B: Biological Sciences, 221, 87–102. doi: 10.1098/rspb.1984.0024
  • Ho, S.L., Xu, G., Fu, W.N., Yang, Q., Hou, H., & Yan, W. (2009). Optimization of array magnetic coil design for functional magnetic stimulation based on improved genetic algorithm. IEEE Transactions on Magnetics, 45, 4849–4852. doi: 10.1109/TMAG.2009.2025892
  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544. doi: 10.1113/jphysiol.1952.sp004764
  • Hollaus, K., & Biro, O. (2000). A FEM formulation to treat 3D eddy currents in laminations. IEEE Transactions on Magnetics, 36, 1289–1292. doi: 10.1109/20.877676
  • Howard, C.Q., Hansen, C.H., & Zander, A.C. (2005). A review of current ultrasound exposure limits. Journal of Occupational Health and Safety, 1, 253–257.
  • Howell, B., Medina, L.E., & Grill, W.M. (2015). Effects of frequency-dependent membrane capacitance on neural excitability. Journal of Neural Engineering, 12, 056015. doi: 10.1088/1741-2560/12/5/056015
  • Huang, Y.-Z., Rothwell, J.C., Chen, R.-S., Lu, C.-S., & Chuang, W.-L. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 122, 1011–1018. doi: 10.1016/j.clinph.2010.08.016
  • Hussennether, V., Oomen, M., Leghissa, M., & Neumüller, H.W. (2004). DC and AC properties of Bi-2223 cabled conductors designed for high-current applications. Physica C: Superconductivity, 401, 135–139. doi: 10.1016/j.physc.2003.09.024
  • Ilmoniemi, R., Koponen, L., Nieminen, J., & Järneflt, G. (2014). Nexstim Oy. MTMS coil device with overlapping coil windings. US 2014/357,935. US Patent and Trademark Office.
  • Ilmoniemi, R., Ruohonen, J., Kamppuri, J., & Virtanen, J. (1997). Nexstim. Stimulator head and method for attenuating the sound emitted by a stimulator coil. US 6,503,187. US Patent and Trademark Office.
  • Ilmoniemi, R.J., Koponen, L.M., Nieminen, J.O., & Järnefelt, G. (2013). Nexstim Oy. mTMS coil device with overlapping coil windings. US 14/294,573, US Patent and Trademark Office.
  • Im, C.-H., & Lee, C. (2006). Computer-aided performance evaluation of a multichannel transcranial magnetic stimulation system. IEEE Transactions on Magnetics, 42, 3803–3808. doi: 10.1109/TMAG.2006.883913
  • Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572. doi: 10.1109/TNN.2003.820440
  • Izhikevich, E.M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063–1070. doi: 10.1109/TNN.2004.832719
  • Jackson, J.D. (1999). Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons, Inc.
  • Jalinous, R. (1991). Technical and Practical Aspects of Magnetic Nerve Stimulation. Journal of Clinical Neurophysiology, 8, 10–25. doi: 10.1097/00004691-199101000-00004
  • Janssen, A.M., Oostendorp, T.F., & Stegeman, D.F. (2015). The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas. Journal of NeuroEngineering and Rehabilitation, 12, 47. doi: 10.1186/s12984-015-0036-2
  • Janssen, A.M., Rampersad, S.M., Lucka, F., Lanfer, B., Lew, S., Aydin, Ü., … Oostendorp, T.F. (2013). The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation. Physics in Medicine and Biology, 58, 4881. doi: 10.1088/0031-9155/58/14/4881
  • Jezernik, S., Sinkjaer, T., & Morari, M. (2010). Charge and energy minimization in electrical/magnetic stimulation of nervous tissue. Journal of Neural Engineering, 7, 046004. doi: 10.1088/1741-2560/7/4/046004
  • Jiles, D. (2016). Introduction to magnetism and magnetic materials (3rd ed.). Boca Raton (FL): CRC Press.
  • Jiles, D.C., & Atherton, D.L. (1986). Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61, 48–60. doi: 10.1016/0304-8853(86)90066-1
  • Julkunen, P., Ruohonen, J., Sääskilahti, S., Säisänen, L., & Karhu, J. (2011). Threshold curves for transcranial magnetic stimulation to improve reliability of motor pathway status assessment. Clinical Neurophysiology, 122, 975–983. doi: 10.1016/j.clinph.2010.09.005
  • Kaelin-Lang, A., & Cohen, L.G. (2000). Enhancing the quality of studies using transcranial magnetic and electrical stimulation with a new computer-controlled system. Journal of Neuroscience Methods, 102, 81–89. doi: 10.1016/S0165-0270(00)00284-3
  • Kaelin-Lang, A., Luft, A.R., Sawaki, L., Burstein, A.H., Sohn, Y.H., & Cohen, L.G. (2002). Modulation of human corticomotor excitability by somatosensory input. The Journal of Physiology, 540, 623–633. doi: 10.1113/jphysiol.2001.012801
  • Kamitani, Y., Bhalodia, V.M., Kubota, Y., & Shimojo, S. (2001). A model of magnetic stimulation of neocortical neurons. Neurocomputing, 38–40, 697–703. doi: 10.1016/S0925-2312(01)00447-7
  • Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U., & Topka, H. (2001). Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clinical Neurophysiology, 112, 250–258. doi: 10.1016/S1388-2457(00)00513-7
  • Kammer, T., Vorwerg, M., & Herrnberger, B. (2007). Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation. NeuroImage, 36, 313–321. doi: 10.1016/j.neuroimage.2007.03.001
  • Kim, D.-H., Loukaides, N., Sykulski, J.K., & Georghious, G.E. (2004). Numerical investigation of the electric field distribution induced in the brain by transcranial magnetic stimulation. IEE Proceedings – Science, Measurement and Technology, 151, 479–483. doi: 10.1049/ip-smt:20040861
  • Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., & Lundervold, A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Human Brain Mapping, 30, 1310–1327. doi: 10.1002/hbm.20599
  • Knäulein, R., & Weyh, T. (1996). Minimization of energy stored in the magnetic field of air coils for medical application. Int. Workshop on Electric and Magnetic Fields Liege, 3, 477–482.
  • Kole, M.H.P., Ilschner, S.U., Kampa, B.M., Williams, S.R., Ruben, P.C., & Stuart, G.J. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11, 178–186. doi: 10.1038/nn2040
  • Kole, M.H.P., & Stuart, G.J., (2012). Signal processing in the axon initial segment. Neuron, 73, 235–247. doi: 10.1016/j.neuron.2012.01.007
  • Koponen, L.M., Nieminen, J.O., & Ilmoniemi, R.J. (2015). Minimum-energy coils for transcranial magnetic stimulation: Application to focal stimulation. Brain Stimulation, 8, 124–134. doi: 10.1016/j.brs.2014.10.002
  • Krings, A., & Soulard, J. (2010). Overview and comparison of iron loss models for electrical machines. Journal of Electrical Engineering, 10, 162–169.
  • Krings, T., Buchbinder, B.R., Butler, W.E., Chiappa, K.H., Jiang, H.J., Rosen, B.R., & Cosgrove, G.R. (1997). Stereotactic transcranial magnetic stimulation: Correlation with direct electrical cortical stimulation. Neurosurgery, 41, 1319–1326.
  • Krishnan, A.V., Lin, C.S.Y., Park, S.B., & Kiernan, M.C. (2009). Axonal ion channels from bench to bedside: A translational neuroscience perspective. Progress in Neurobiology, 89, 288–313. doi: 10.1016/j.pneurobio.2009.08.002
  • Laakso, I., & Hirata, A. (2012). Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation. Physics in Medicine and Biology, 57, 7753. doi: 10.1088/0031-9155/57/23/7753
  • Laakso, I., Hirata, A., & Ugawa, Y. (2014). Effects of coil orientation on the electric field induced by TMS over the hand motor area. Physics in Medicine and Biology, 59, 203. doi: 10.1088/0031-9155/59/1/203
  • Lai, H.C., & Jan, L.Y. (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nature Reviews Neuroscience, 7, 548–562. doi: 10.1038/nrn1938
  • Landau, L.D., & Lifshitz, E. (1935). On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion, 8, 101–114.
  • Langley, P. (1988). Machine learning as an experimental science. Machine Learning, 3, 5–8. doi: 10.1007/BF00115008
  • Lapicque, L. (1907). Recherches quantatives sur l'excitation électrique des nerfs traitée comme une polarisation. Journal De Physiologie Et De Pathologie Générale, 9, 620–635.
  • Larbalestier, D., Gurevich, A., Feldmann, D.M., & Polyanskii, A. (2001). High-Tc superconducting materials for electric power applications. Nature, 414, 368–377. doi: 10.1038/35104654
  • Laudani, A., Fulginei, F.R., & Salvini, A. (2015). TMS array coils optimization by means of CFSO. IEEE Transactions on Magnetics, 51, 1–4. doi: 10.1109/TMAG.2014.2364176
  • Lee, W.H., Deng, Z.-D., Kim, T.-S., Laine, A.F., Lisanby, S.H., & Peterchev, A.V. (2012). Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity. NeuroImage, 59, 2110–2123. doi: 10.1016/j.neuroimage.2011.10.029
  • Lee, W.H., Lisanby, S.H., Laine, A.F., & Peterchev, A.V. (2014). Stimulation strength and focality of electroconvulsive therapy and magnetic seizure therapy in a realistic head model. Proceedings of IEEE Engineering in Medicine and Biology Society, 36, 410–413. doi: 10.1109/EMBC.2014.6943615
  • Lee, W.H., Lisanby, S.H., Laine, A.F., & Peterchev, A.V. (2016). Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model. European Psychiatry, 36, 55–64. doi: 10.1016/j.eurpsy.2016.03.003
  • Leterrier, C., Brachet, A., Dargent, B., & Vacher, H. (2011). Determinants of voltage-gated sodium channel clustering in neurons. Seminars in Cell & Developmental Biology, 22, 171–177. doi: 10.1016/j.semcdb.2010.09.014
  • Leterrier, C., Brachet, A., Fache, M.-P., & Dargent, B. (2010). Voltage-gated sodium channel organization in neurons: Protein interactions and trafficking pathways. Neuroscience Letters, 486, 92–100. doi: 10.1016/j.neulet.2010.08.079
  • Littmann, M.F. (1967). Structures and Magnetic Properties of Grain‐Oriented 3.2% Silicon—Iron. Journal of Applied Physics, 38, 1104–1108. doi: 10.1063/1.1709503
  • Lloberas, J., Sumper, A., Sanmarti, M., & Granados, X. (2014). A review of high temperature superconductors for offshore wind power synchronous generators. Renewable and Sustainable Energy Reviews, 38, 404–414. doi: 10.1016/j.rser.2014.05.003
  • Long, N.J., Badcock, R., Beck, P., Mulholl, M., Ross, N., Staines, M., … Buckley, R.G. (2008). Narrow strand YBCO Roebel cable for lowered AC loss. Journal of Physics: Conference Series, 97, 012280. doi: 10.1088/1742-6596/97/1/012280
  • Loo, C., Sachdev, P., Elsayed, H., McDarmont, B., Mitchell, P., Wilkinson, M., … Gandevia, S. (2001). Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychologic functioning, electroencephalogram, and auditory threshold in depressed patients. Biological Psychiatry, 49, 615–623. doi: 10.1016/S0006-3223(00)00996-3
  • Lorenzen, H.W., & Weyh, T. (1992). Practical application of the summation method for 3-D static magnetic field calculation of a setup of conductive and ferromagnetic material. IEEE Transactions on Magnetics, 28, 1481–1484. doi: 10.1109/20.123976
  • Maccabee, P.J., Amassian, V.E., Cracco, R.Q., & Cadwell, J.A. (1988). An analysis of peripheral motor nerve stimulation in humans using the magnetic coil. Electroencephalography and Clinical Neurophysiology, 70, 524–533. doi: 10.1016/0013-4694(88)90150-2
  • Maccabee, P.J., Nagarajan, S.S., Amassian, V.E., Durand, D.M., Szabo, A.Z., Ahad, A.B., … Eberle, L.P. (1998). Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve. The Journal of Physiology, 513, 571–585. doi: 10.1111/j.1469-7793.1998.571bb.x
  • Maeda, H., & Yanagisawa, Y. (2014). Recent developments in high-temperature superconducting magnet technology (Review). IEEE Transactions on Applied Superconductivity, 24, 1–12. doi: 10.1109/TASC.2013.2287707
  • Magistris, M.R., Rösler, K.M., Truffert, A., Landis, T., & Hess, C.W. (1999). A clinical study of motor evoked potentials using a triple stimulation technique. Brain, 122, 265–279. doi: 10.1093/brain/122.2.265
  • Magistris, M.R., Rösler, K.M., Truffert, A., & Myers, J.P. (1998). Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain, 121, 437–450. doi: 10.1093/brain/121.3.437
  • Malcolm, M.P., Triggs, W.J., Light, K.E., Shechtman, O., Khandekar, G., & Gonzalez Rothi, L.J. (2006). Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clinical Neurophysiology, 117, 1037–1046. doi: 10.1016/j.clinph.2006.02.005
  • Maxwell, J.C. (1891). A treatise on electricity and magnetism (3rd ed.). Oxford: Clarendon Press.
  • McIntyre, C.C., Richardson, A.G., & Grill, W.M. (2002). Modeling the Excitability of Mammalian Nerve Fibers: Influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006. doi: 10.1152/jn.00353.2001
  • McNeal, D.R. (1976). Analysis of a model for excitation of myelinated nerve. IEEE Transactions on Biomedical Engineering, 23, 329–337. doi: 10.1109/TBME.1976.324593
  • McRobbie, D. (1985). Design and instrumentation of a magnetic nerve stimulator. Journal of Physics E: Scientific Instruments, 18, 74. doi: 10.1088/0022-3735/18/1/019
  • Mills, K.R., Boniface, S.J., & Schubert, M., (1992). Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 85, 17–21. doi: 10.1016/0168-5597(92)90096-T
  • Miranda, P.C., Hallett, M., & Basser, P.J. (2003). The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Transactions on Biomedical Engineering, 50, 1074–1085. doi: 10.1109/TBME.2003.816079
  • Miranda, P.C., Lomarev, M., & Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology, 117, 1623–1629. doi: 10.1016/j.clinph.2006.04.009
  • Mitchell, W.K., Baker, M.R., & Baker, S.N. (2007). Muscle responses to transcranial stimulation in man depend on background oscillatory activity. The Journal of Physiology, 583, 567–579. doi: 10.1113/jphysiol.2007.134031
  • Moffitt, M.A., McIntyre, C.C., & Grill, W.M. (2004). Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models. Biomedical Engineering, IEEE Transactions on, 51, 229–236. doi: 10.1109/TBME.2003.820382
  • Moisa, M., Pohmann, R., Ewald, L., & Thielscher, A. (2009). New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study. Journal of Magnetic Resonance Imaging, 29, 189–197. doi: 10.1002/jmri.21611
  • Moosavi, S.H., Ellaway, P.H., Catley, M., Stokes, M.J., & Haque, N. (1999). Corticospinal function in severe brain injury assessed using magnetic stimulation of the motor cortex in man. Journal of the Neurological Sciences, 164, 179–186. doi: 10.1016/S0022-510X(99)00065-9
  • Möser, M., & Kropp, W. (2010). Körperschall [Structure-Borne Sound]. Berlin/New York: Springer.
  • Mould, S. (1998). Magstim Company Limited. Coil assemblies for magnetic stimulators. US 6,179,770. US Patent and Trademark Office.
  • Mueller, J.K., Grigsby, E.M., Prevosto, V., Petraglia III, F.W., Rao, H., Deng, Z.-D., … Grill, W.M. (2014). Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nature Neuroscience, 17, 1130–1136. doi: 10.1038/nn.3751
  • Nadeem, M., Thorlin, T., Gandhi, O.P., & Persson, M. (2003). Computation of electric and magnetic stimulation in human head using the 3-D impedance method. IEEE Transactions on Biomedical Engineering, 50, 900–907. doi: 10.1109/TBME.2003.813548
  • Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50, 2061–2070. doi: 10.1109/JRPROC.1962.288235
  • Navarro de Lara, L.I., Windischberger, C., Kuehne, A., Woletz, M., Sieg, J., Bestmann, S., … Laistler, E. (2015). A novel coil array for combined TMS/fMRI experiments at 3 T. Magnetic Resonance in Medicine, 74, 1492–1501. doi: 10.1002/mrm.25535
  • Navarro de Lara, L.I., Windischberger, C., Laistler, E., Sieg, J., Moser, E., & Kühne, A. (2013). Medical University of Vienna. Method and system for combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies. US 2015/99,963. US Patent and Trademark Office.
  • Ni, Z., Charab, S., Gunraj, C., Nelson, A.J., Udupa, K., Yeh, I.-J., & Chen, R. (2011). Transcranial magnetic stimulation in different current directions activates separate cortical circuits. Journal of Neurophysiology, 105, 749–756. doi: 10.1152/jn.00640.2010
  • Niehaus, L., Meyer, B.U., & Weyh, T. (2000). Influence of pulse configuration and direction of coil current on excitatory effects of magnetic motor cortex and nerve stimulation. Clinical Neurophysiology, 111, 75–80. doi: 10.1016/S1388-2457(99)00198-4
  • Nielsen, J.F. (1996). Logarithmic distribution of amplitudes of compound muscle action potentials evoked by transcranial magnetic stimulation. Journal of Clinical Neurophysiology, 13, 423–434. doi: 10.1097/00004691-199609000-00005
  • Nielsen, J.F., Klemar, B., & Kiilerich, H. (1995). A New High-Frequency Magnetic Stimulator with an Oil-Cooled Coil. Journal of Clinical Neurophysiology, 12, 460–467. doi: 10.1097/00004691-199509010-00005
  • Nikouline, V., Ruohonen, J., & Ilmoniemi, R.J. (1999). The role of the coil click in TMS assessed with simultaneous EEG. Clinical Neurophysiology, 110, 1325–1328. doi: 10.1016/S1388-2457(99)00070-X
  • Nowak, G.L., & Bullier, J. (1998a). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements. Experimental Brain Research, 118, 477–488. doi: 10.1007/s002210050304
  • Nowak, G.L., & Bullier, J. (1998b). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter II. Evidence from selective inactivation of cell bodies and axon initial segments. Experimental Brain Research, 118, 489–500. doi: 10.1007/s002210050305
  • Nummenmaa, A., McNab, J.A., Savadjiev, P., Okada, Y., Hämäläinen, M.S., Wang, R., … Raij, T. (2014). Targeting of white matter tracts with transcranial magnetic stimulation. Brain Stimulation, 7, 80–84. doi: 10.1016/j.brs.2013.10.001
  • Nummenmaa, A., Stenroos, M., Ilmoniemi, R.J., Okada, Y.C., Hämäläinen, M.S., & Raij, T. (2013). Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clinical Neurophysiology, 124, 1995–2007. doi: 10.1016/j.clinph.2013.04.019
  • Opitz, A., Legon, W., Rowlands, A., Bickel, W.K., Paulus, W., & Tyler, W.J. (2013). Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. NeuroImage, 81, 253–264. doi: 10.1016/j.neuroimage.2013.04.067
  • Opitz, A., Windhoff, M., Heidemann, R.M., Turner, R., & Thielscher, A. (2011). How the brain tissue shapes the electric field induced by transcranial magnetic stimulation. NeuroImage, 58, 849–859. doi: 10.1016/j.neuroimage.2011.06.069
  • Ott, G., Wrba, J., & Lucke, R. (2003). Recent developments of Mn–Zn ferrites for high permeability applications. Journal of Magnetism and Magnetic Materials, 254–255, 535–537. doi: 10.1016/S0304-8853(02)00961-7
  • Paffi, A., Camera, F., Carducci, F., Rubino, G., Tampieri, P., Liberti, M., & Apollonio, F. (2015). A computational model for real-time calculation of electric field due to transcranial magnetic stimulation in clinics. International Journal of Antennas and Propagation, 976854. doi: 10.1155/2015/976854
  • Palstra, T.T.M., Batlogg, B., van Dover, R.B., Schneemeyer, L.F., & Waszczak, J.V. (1989). Critical currents and thermally activated flux motion in high‐temperature superconductors. Applied Physics Letters, 54, 763–765. doi: 10.1063/1.101474
  • Pascual-Leone, A., Houser, C.M., Reese, K., Shotland, L.I., Grafman, J., Sato, S., … Cohen, L.G. (1993). Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Clinical Neurophysiology, 89, 120–130.
  • Peasgood, W., Dissado, L.A., Lam, C.K., Armstrong, A., & Wood, W. (2003). A novel electrical model of nerve and muscle using Pspice. Journal of Physics D: Applied Physics, 36, 311. doi: 10.1088/0022-3727/36/4/301
  • Pechmann, A., Delvendahl, I., Bergmann, T.O., Ritter, C., Hartwigsen, G., Gleich, B., … Siebner, H.R. (2012). The number of full-sine cycles per pulse influences the efficacy of multicycle transcranial magnetic stimulation. Brain Stimulation, 5, 148–154. doi: 10.1016/j.brs.2011.02.006
  • Peterchev, A.V., D’Ostilio, K., Rothwell, J.C., & Murphy, D.L. (2014). Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping. Journal of Neural Engineering, 11, 056023. doi: 10.1088/1741-2560/11/5/056023
  • Peterchev, A.V., Deng, Z.-D., & Goetz, S.M. (2015a). Advances in transcranial magnetic stimulation technology. In I. M. Reti (Ed.), Brain Stimulation: Methodologies and Interventions. Hoboken, NJ: John Wiley & Sons.
  • Peterchev, A.V., Goetz, S.M., Westin, G.G., Luber, B., & Lisanby, S.H. (2013). Pulse width dependence of motor threshold and input–output curve characterized with controllable pulse parameter transcranial magnetic stimulation. Clinical Neurophysiology, 124, 1364–1372. doi: 10.1016/j.clinph.2013.01.011
  • Peterchev, A.V., Jalinous, R., & Lisanby, S.H. (2008). A transcranial magnetic stimulator inducing near-rectangular pulses with Controllable Pulse Width (cTMS). IEEE Transactions on Biomedical Engineering, 55, 257–266. doi: 10.1109/TBME.2007.900540
  • Peterchev, A.V., Murphy, D.L., & Lisanby, S.H. (2011). Repetitive transcranial magnetic stimulator with controllable pulse parameters. Journal of Neural Engineering, 8, 036016. doi: 10.1088/1741-2560/8/3/036016
  • Peterchev, A.V., Murphy, D.L.K., & Goetz, S.M. (2015b). Quiet transcranial magnetic stimulation: Status and future directions. Proceedings of IEEE Engineering in Medicine and Biology Society, 37, 226–229. doi: 10.1109/EMBC.2015.7318341
  • Pitcher, J.B., Ogston, K.M., & Miles, T.S. (2003). Age and sex differences in human motor cortex input-output characteristics. The Journal of Physiology, 546, 605–613. doi: 10.1113/jphysiol.2002.029454
  • Polson, M.J.R., Barker, A.T., & Freeston, I.L. (1982). Stimulation of nerve trunks with time-varying magnetic fields. Medical and Biological Engineering and Computing, 20, 243–244. doi: 10.1007/BF02441362
  • Popper, K.R. (2005). The logic of scientific discovery. Oxford: Routledge.
  • Preisach, F. (1935). Über die magnetische Nachwirkung. Zeitschrift Für Physik, 94, 277–302. doi: 10.1007/BF01349418
  • Rasband, M.N., & Peles, E. (2016). The Nodes of Ranvier: Molecular Assembly and Maintenance. Cold Spring Harbor Perspectives in Biology, 8, a020495. doi: 10.1101/cshperspect.a020495
  • Ravazzani, P., Ruohonen, J., Grandori, F., & Tognola, G. (1996). Magnetic stimulation of the nervous system: Induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Annals of Biomedical Engineering, 24, 606–616. doi: 10.1007/BF02684229
  • Reilly, J.P. (1989). Peripheral nerve stimulation by induced electric currents: Exposure to time-varying magnetic fields. Medical and Biological Engineering and Computing, 27, 101–110. doi: 10.1007/BF02446217
  • Reilly, J.P. (1992). Principles of nerve and heart excitation by time-varying magnetic fields. Annals of the New York Academy of Sciences, 649, 96–117. doi: 10.1111/j.1749-6632.1992.tb49600.x
  • Riehl, M.E. (2004). Neuronetics, Inc. System and method to reduce discomfort using nerve stimulation. US 7,857,746. US Patent Office.
  • Riehl, M.E., & Ghiron, K.M. (2005). Neuronetics, Inc. Magnetic core for medical procedures. US 8,657,731. US Patent Office.
  • Robinson, P.A. (2011). Neural field theory of synaptic plasticity. Journal of Theoretical Biology, 285, 156–163. doi: 10.1016/j.jtbi.2011.06.023
  • Rösler, K.M. (2001). Transcranial magnetic brain stimulation: A tool to investigate central motor pathways. Physiology, 16, 297–302.
  • Rösler, K.M., Roth, D.M., & Magistris, M.R. (2008). Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique. Experimental Brain Research, 187, 51–59. doi: 10.1007/s00221-008-1278-z
  • Rotem, A., Neef, A., Neef, N.E., Agudelo-Toro, A., Rakhmilevitch, D., Paulus, W., & Moses, E. (2014). Solving the orientation specific constraints in transcranial magnetic stimulation by rotating fields. PLoS ONE, 9, e86794. doi: 10.1371/journal.pone.0086794
  • Roth, B.J., & Basser, P.J. (1990). A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Transactions on Biomedical Engineering, 37, 588–597. doi: 10.1109/10.55662
  • Roth, B.J., Maccabee, P.J., Eberle, L.P., Amassian, V.E., Hallett, M., Cadwell, J., , … Tatarian, G.T. (1994). In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve. Electroencephalography and Clinical Neurophysiology, 93, 68–74.
  • Roth, Y., Levkovitz, Y., Pell, G.S., Ankry, M., & Zangen, A. (2014). Safety and characterization of a novel multi-channel TMS stimulator. Brain Stimulation, 7, 194–205. doi: 10.1016/j.brs.2013.09.004
  • Roy Choudhury, K., Boyle, L., Burke, M., Lombard, W., Ryan, S., & McNamara, B. (2011). Intra subject variation and correlation of motor potentials evoked by transcranial magnetic stimulation. Irish Journal of Medical Science, 180, 873–880. doi: 10.1007/s11845-011-0722-4
  • Rudiak, D., & Marg, E. (1994). Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93, 358–371. doi: 10.1016/0168-5597(94)90124-4
  • Ruohonen, J., & Ilmoniemi, R. (1998). Focusing and targeting of magnetic brain stimulation using multiple coils. Medical & Biological Engineering & Computing, 36, 297–301. doi: 10.1007/BF02522474
  • Ruohonen, J., & Karhu, J. (2010). Navigated transcranial magnetic stimulation. Neurophysiologie Clinique/Clinical Neurophysiology, 40, 7–17. doi: 10.1016/j.neucli.2010.01.006
  • Ruohonen, J., Ravazzani, P., & Grandori, F. (1998). Functional magnetic stimulation: Theory and coil optimization. Bioelectrochem Bioenerg, 47, 213–219. doi: 10.1016/S0302-4598(98)00191-3
  • Ruohonen, J., Ravazzani, P., Grandori, F., & Ilmoniemi, R.J. (1999). Theory of multichannel magnetic stimulation: Toward functional neuromuscular rehabilitation. IEEE Transactions on Biomedical Engineering, 46, 646–651. doi: 10.1109/10.764941
  • Ruohonen, J., Ravazzani, P., Nilsson, J., Panizza, M., Grandori, F., & Tognola, G. (1996). A volume-conduction analysis of magnetic stimulation of peripheral nerves. IEEE Transactions on Biomedical Engineering, 43, 669–678. doi: 10.1109/10.503174
  • Ruohonen, J., Virtanen, J., & Ilmoniemi, R.J. (1997). Coil optimization for magnetic brain stimulation. Annals of Biomedical Engineering, 25, 840–849. doi: 10.1007/BF02684168
  • Rush, S., & Driscoll, D.A. (1968). Current distribution in the brain from surface electrodes. Anesthesia & Analgesia, 47, 717–723. doi: 10.1213/00000539-196811000-00016
  • Rusu, C.V., Murakami, M., Ziemann, U., & Triesch, J. (2014). A Model of TMS-induced I-waves in Motor Cortex. Brain Stimulation, 7, 401–414. doi: 10.1016/j.brs.2014.02.009
  • Sahlsten, H., Isohanni, J., Haapaniemi, J., Salonen, J., Paavola, J., Löyttyniemi, E., … Jääskeläinen, S.K. (2015). Electric field navigated transcranial magnetic stimulation for chronic tinnitus: A pilot study. International Journal of Audiology, 54, 899–909. doi: 10.3109/14992027.2015.1054041
  • Salinas, F.S., Lancaster, J.L., & Fox, P.T. (2009). 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method. Physics in Medicine and Biology, 54, 3631. doi: 10.1088/0031-9155/54/12/002
  • Salvador, R., Miranda, P.C., Roth, Y., & Zangen, A. (2007). High-permeability core coils for transcranial magnetic stimulation of deep brain regions. Proceeding of IEEE Engineering in Medicine and Biology Society, 29, 6652–6655. doi: 10.1109/IEMBS.2007.4353885
  • Salvador, R., Silva, S., Basser, P.J., & Miranda, P.C. (2011). Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clinical Neurophysiol, 122, 748–758. doi: 10.1016/j.clinph.2010.09.022
  • Sawicki, B., Starzynski, J., & Wincenciak, S. (2006). Numerical model of magnetic stimulation with metal implants. IEEE Transactions on Magnetics, 42, 783–786. doi: 10.1109/TMAG.2006.872012
  • Schmid, M., Weyh, T., & Meyer, B.-U. (1993). Entwicklung, Optimierung und Erprobung neuer Geräte für die magnetomotorische Stimulation von Nervenfasern/Development, Optimization and Testing of New Devices for Magnetomotive Nerve Fibre Stimulation. Biomedizinische Technik/Biomedical Engineering, 38, 317–324. doi: 10.1515/bmte.1993.38.12.317
  • Scholz, A., Reid, G., Vogel, W., & Bostock, H. (1993). Ion channels in human axons. Journal of Neurophysiology, 70, 1274–1279.
  • Schwarz, J.R., Reid, G., & Bostock, H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflügers Archiv, 430, 283–292. doi: 10.1007/BF00374660
  • Scott, A.C. (1975). The electrophysics of a nerve fiber. Reviews of Modern Physics, 47, 487–533. doi: 10.1103/RevModPhys.47.487
  • Sekino, M., & Ueno, S. (2002). Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation. Journal of Applied Physics, 91, 8730–8732. doi: 10.1063/1.1454987
  • Sekino, M., & Ueno, S. (2004). FEM-based determination of optimum current distribution in transcranial magnetic stimulation as an alternative to electroconvulsive therapy. IEEE Transactions on Magnetics, 40, 2167–2169. doi: 10.1109/TMAG.2004.828982
  • Senoussi, S. (1992). Review of the critical current densities and magnetic irreversibilities in high Tc superconductors. Journal De Physique III, 2, 1041–1257. doi: 10.1051/jp3:1992102
  • Shokrollahi, H., & Janghorban, K. (2007). Soft magnetic composite materials (SMCs). Journal of Materials Processing Technology, 189, 1–12. doi: 10.1016/j.jmatprotec.2007.02.034
  • Siebner, H.R., Peller, M., Willoch, F., Auer, C., Bartenstein, P., Drzezga, A., … Conrad, B. (1999). Imaging functional activation of the auditory cortex during focal repetitive transcranial magnetic stimulation of the primary motor cortex in normal subjects. Neuroscience Letters, 270, 37–40.
  • Silva, S., Basser, P.J., & Miranda, P.C. (2008). Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clinical Neurophysiology, 119, 2405–2413. doi: 10.1016/j.clinph.2008.07.248
  • Soleimani, M., Lionheart, W.R.B., Peyton, A.J., Xiandong, M., & Higson, S.R., (2006). A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data. IEEE Transactions on Magnetics, 42, 1560–1567. doi: 10.1109/TMAG.2006.871255
  • Sommer, M., Ciocca, M., Hannah, R., Hammond, P., Neef, N., Paulus, W., … Rothwell, J.C. (2014a). Intermittent theta burst stimulation inhibits human motor cortex when applied with mostly monophasic (anterior-posterior) pulses. Clinical Neurophysiology, 125, S228. doi: 10.1016/S1388-2457(14)50747-X
  • Sommer, M., D’Ostilio, K., Ciocca, M., Hannah, R., Hammond, P., Goetz, S., … Rothwell, J.C. (2014b). TMS can selectively activate and condition two different sets of excitatory synaptic inputs to corticospinal neurones in human. SFN Society for Neuroscience, 542.
  • Sommer, M., Lang, N., Tergau, F., & Paulus, W. (2002). Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation? NeuroReport, 13, 809–811. doi: 10.1097/00001756-200205070-00015
  • Sommer, M., Norden, C., Schmack, L., Rothkegel, H., Lang, N., & Paulus, W. (2013). Opposite optimal current flow directions for induction of neuroplasticity and excitation threshold in the human motor cortex. Brain Stimulation, 6, 363–370. doi: 10.1016/j.brs.2012.07.003
  • Starck, J., Rimpiläinen, I., Pyykkö, I., & Esko, T. (1996). The Noise Level in Magnetic Stimulation. Scandinavian Audiology, 25, 223–226. doi: 10.3109/01050399609074958
  • Starzynski, J., Szmurlo, R., & Sawicki, B. (2009). Distributed optimization environment for bioelectromagnetism. Theoretical Engineering (ISTET), 15, 1–5.
  • Stenfelt, S., & Goode, R.L. (2005). Bone-conducted sound: Physiological and clinical aspects. Otology & Neurotology, 26, 1245–1261. doi: 10.1097/01.mao.0000187236.10842.d5
  • Stephanova, D.I., & Bostock, H. (1995). A distributed-parameter model of the myelinated human motor nerve fibre: Temporal and spatial distributions of action potentials and ionic currents. Biological Cybernetics, 73, 275–280. doi: 10.1007/BF00201429
  • Suárez-Bagnasco, D., Armentano-Feijoo, R., & Suárez-Ántola (2010). The excitation functional for magnetic stimulation of fibers. Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 4829–4833. doi: 10.1109/IEMBS.2010.5627910
  • Szecsi, J., Götz, S., Pöllmann, W., & Straube, A. (2010). Force–pain relationship in functional magnetic and electrical stimulation of subjects with paresis and preserved sensation. Clinical Neurophysiology, 121, 1589–1597. doi: 10.1016/j.clinph.2010.03.023
  • Szlavik, R.B. (2008). Nicotinic acetylcholine receptor kinetics of the neuromuscular junction simulated using SPICE: An illustration of physiological process simulation with conventional circuit simulation software. Proceedings of the 2008 ASEE Annual Conference and Exposition.
  • Szlavik, R.B., Bhuiyan, A.K., Carver, A., & Jenkins, F. (2006). Neural-electronic inhibition simulated with a neuron model implemented in SPICE. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14, 109–115. doi: 10.1109/TNSRE.2006.870499
  • Szlavik, R.B., & de Bruin, H. (1999). The effect of stimulus current pulse width on nerve fiber size recruitment patterns. Medical Engineering & Physics, 21, 507–515. doi: 10.1016/S1350-4533(99)00074-0
  • Tachas, N.J., & Samaras, T. (2014). The effect of head and coil modeling for the calculation of induced electric field during transcranial magnetic stimulation. International Journal of Psychophysiology, 93, 167–171. doi: 10.1016/j.ijpsycho.2013.07.004
  • Takada, Y., Abe, M., Masuda, S., & Inagaki, J. (1988). Commercial scale production of Fe‐6.5 wt. % Si sheet and its magnetic properties. Journal of Applied Physics, 64, 5367–5369. doi: 10.1063/1.342373
  • Tang, A.D., Makowiecki, K., Bartlett, C., & Rodger, J. (2015). Low intensity repetitive transcranial magnetic stimulation does not induce cell survival or regeneration in a mouse optic nerve crush model. PLoS One, 10, e0126949. doi: 10.1371/journal.pone.0126949
  • Thielscher, A., & Kammer, T. (2002). Linking physics with physiology in TMS: a sphere field model to determine the cortical stimulation site in TMS. Neuroimage, 17, 1117–1130. doi: 10.1006/nimg.2002.1282
  • Thielscher, A., Opitz, A., & Windhoff, M. (2011). Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage, 54, 234–243. doi: 10.1016/j.neuroimage.2010.07.061
  • Thomas, S.L., & Gorassini, M.A. (2005). Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. Journal of Neurophysiology, 94, 2844–2855. doi: 10.1152/jn.00532.2005
  • Tixador, P., Porcar, L., Floch, E., Buzon, D., Isfort, D., Bourgault, D., … Tournier, R. (2001). Current limitation with bulk Y-Ba-Cu-O. IEEE Transactions on Applied Superconductivity, 11, 2034–2037. doi: 10.1109/77.920254
  • Tofts, P.S. (1990). The distribution of induced currents in magnetic stimulation of the nervous system. Physics in Medicine and Biology, 35, 1119–1128. doi: 10.1088/0031-9155/35/8/008
  • Toschi, N., Keck, M.E., Welt, T., & Guerrisi, M. (2012). Quantifying uncertainty in Transcranial Magnetic Stimulation – A high resolution simulation study in ICBM space. Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 34, 1218–1221. doi: 10.1109/EMBC.2012.6346156
  • Toschi, N., Welt, T., Guerrisi, M., & Keck, M.E. (2008). A reconstruction of the conductive phenomena elicited by transcranial magnetic stimulation in heterogeneous brain tissue. Physica Medica, 24, 80–86. doi: 10.1016/j.ejmp.2008.01.005
  • Toschi, N., Welt, T., Guerrisi, M., & Keck, M.E. (2009). Transcranial magnetic stimulation in heterogeneous brain tissue: Clinical impact on focality, reproducibility and true sham stimulation. Journal of Psychiatric Research, 43, 255–264. doi: 10.1016/j.jpsychires.2008.04.008
  • Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function. Perception & Psychophysics, 61, 87–106. doi: 10.3758/BF03211951
  • Trimmer, J.S., & Rhodes, K.J. (2004). Localization of Voltage-Gated Ion Channels IN Mammalian Brain. Annual Review of Physiology, 66, 477–519. doi: 10.1146/annurev.physiol.66.032102.113328
  • Tringali, S., Perrot, X., Collet, L., & Moulin, A. (2012). Repetitive transcranial magnetic stimulation: Hearing safety considerations. Brain Stimulation, 5, 354–363. doi: 10.1016/j.brs.2011.06.005
  • Turner, R. (1986). A target field approach to optimal coil design. Journal of Physics D: Applied Physics, 19, L147. doi: 10.1088/0022-3727/19/8/001
  • Ueno, S., Tashiro, T., & Harada, K. (1988). Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. Journal of Applied Physics, 64, 5862–5864. doi: 10.1063/1.342181
  • Uglietti, D., Yanagisawa, Y., Maeda, H., & Kiyoshi, T. (2010). Measurements of magnetic field induced by screening currents in YBCO solenoid coils. Superconductor Science and Technology, 23, 115002. doi: 10.1088/0953-2048/23/11/115002
  • Ursino, M., Cona, F., & Zavaglia, M. (2010). The generation of rhythms within a cortical region: Analysis of a neural mass model. NeuroImage, 52, 1080–1094. doi: 10.1016/j.neuroimage.2009.12.084
  • Vacher, H., & Trimmer, J.S. (2012). Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia, 53, 21–31. doi: 10.1111/epi.12032
  • van Kuijk, A.A., Anker, L.C., Pasman, J.W., Hendriks, J.C.M., van Elswijk, G., & Geurts, A.C.H. (2009a). Stimulus–response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles. Journal of Electromyography and Kinesiology, 19, 574–583. doi: 10.1016/j.jelekin.2008.02.006
  • van Kuijk, A.A., Pasman, J.W., Hendricks, H.T., Zwarts, M.J., & Geurts, A.C.H. (2009b). Predicting Hand Motor Recovery in Severe Stroke: The Role of Motor Evoked Potentials in Relation to Early Clinical Assessment. Neurorehabilitation and Neural Repair, 23, 45–51. doi: 10.1177/1545968308317578
  • Volz, L.J., Hamada, M., Rothwell, J.C., & Grefkes, C. (2014). What makes the muscle twitch: motor system connectivity and TMS-induced activity. Cerebral Cortex, 25, 2346–2353. doi: 10.1093/cercor/bhu032
  • Wagner, T., Eden, U., Fregni, F., Valero-Cabre, A., Ramos-Estebanez, C., Pronio-Stelluto, V., … Pascual-Leone, A. (2008). Transcranial magnetic stimulation and brain atrophy: A computer-based human brain model study. Experimental Brain Research, 186, 539–550. doi: 10.1007/s00221-007-1258-8
  • Wagner, T., Eden, U., Rushmore, J., Russo, C.J., Dipietro, L., Fregni, F., … Valero-Cabré, A. (2014). Impact of brain tissue filtering on neurostimulation fields: A modeling study. NeuroImage, 85, 1048–1057. doi: 10.1016/j.neuroimage.2013.06.079
  • Wagner, T.A., Zahn, M., Grodzinsky, A.J., & Pascual-Leone, A. (2004). Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Transactions on Biomedical Engineering, 51, 1586–1598. doi: 10.1109/TBME.2004.827925
  • Wang, X., Chen, Y., Guo, M., & Wang, M. (2005). Design of Multi-channel Brain Magnetic Stimulator and ANSYS Simulation. International Journal of Bioelectromagnetism, 7, 259–262.
  • Wang, X., Wang, J., Deng, B., Wei, X-L., & Li, H.-Y. (2013). The effects of induction electric field on sensitivity of firing rate in a single-compartment neuron model. Neurocomputing, 99, 555–563. doi: 10.1016/j.neucom.2012.04.032
  • Wassermann, E.M., & Zimmermann, T. (2012). Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps. Pharmacology & Therapeutics, 133, 98–107. doi: 10.1016/j.pharmthera.2011.09.003
  • Weissman, J.D., Epstein, C.M., & Davey, K.R. (1992). Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalogr Clinical Neurophysiol, 85, 215–219. doi: 10.1016/0168-5597(92)90135-X
  • Wilson, M.T., Goodwin, D.P., Brownjohn, P.W., Shemmell, J., & Reynolds, J.N.J. (2014). Numerical modelling of plasticity induced by transcranial magnetic stimulation. Journal of Computational Neuroscience, 36, 499–514. doi: 10.1007/s10827-013-0485-1
  • Windhoff, M., Opitz, A., & Thielscher, A. (2013). Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models. Human Brain Mapping, 34, 923–935. doi: 10.1002/hbm.21479
  • Wolf, E.W., & Walker, C.F. (1991). Design and practical considerations in the construction of magnetic induction stimulators. Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 13, 857–858. doi: 10.1109/IEMBS.1991.684230
  • Wong, S.H., & Cendes, Z.J. (1989). Numerically stable finite element methods for the Galerkin solution of eddy current problems. IEEE Transactions on Magnetics, 25, 3019–3021. doi: 10.1109/20.34356
  • Wongsarnpigoon, A., & Warren, M.G. (2010). Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. Journal of Neural Engineering, 7, 046009. doi: 10.1088/1741-2560/7/4/046009
  • Wongsarnpigoon, A., Woock, J.P., & Grill, W.M. (2010). Efficiency analysis of waveform shape for electrical excitation of nerve fibers. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 18, 319–328. doi: 10.1109/TNSRE.2010.2047610
  • Xiong, H., Shi, J.H., Hu, X.W., & Liu, J.Z. (2016). The Focusing Optimization of Transcranial Magnetic Stimulation System. Progress in Electromagnetics Research, 48, 145–154. doi: 10.2528/PIERM16040509
  • Xu, G., Wang, M., Chen, Y., Yang, S., & Yan, W. (2005). The optimal design of magnetic coil in transcranial magnetic stimulation. Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 27, 6221–6224. doi: 10.1109/IEMBS.2005.1615917
  • Yamaguchi, M., Yamada, S., Daimon, N., Yamamoto, I., Kawakami, T., & Takenaka, T. (1989). Electromagnetic mechanism of magnetic nerve stimulation. Journal of Applied Physics, 66, 1459–1465. doi: 10.1063/1.344421
  • Yang, S., Xu, G., Wang, L., Chen, Y., Wu, H., Li, Y., & Yang, Q. (2006). 3D realistic head model simulation based on transcranial magnetic stimulation. Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), 28, 6469–6472. doi: 10.1109/IEMBS.2006.260877
  • Yang, S., Xu, G., Wang, L., Geng, Y., Yu, H., & Yang, Q. (2010). Circular coil array model for transcranial magnetic stimulation. IEEE Transactions on Applied Superconductivity, 20, 829–833. doi: 10.1109/TASC.2010.2040379
  • Zangen, A., Roth, Y., Voller, B., & Hallett, M. (2005). Transcranial magnetic stimulation of deep brain regions: Evidence for efficacy of the H-Coil. Clinical Neurophysiology, 116, 775–779. doi: 10.1016/j.clinph.2004.11.008
  • Zarkowski, P., Shin, C.J., Dang, T., Russo, J., & Avery, D. (2006). EEG and the variance of motor evoked potential amplitude. Clinical EEG and Neuroscience, 37, 247–251. doi: 10.1177/15x5005940603700316

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.