136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design optimization of additively manufactured sandwich beams through experimentation, machine learning, and imperialist competitive algorithm

, , , , &
Pages 320-337 | Received 03 Oct 2023, Accepted 17 Jan 2024, Published online: 05 Feb 2024

References

  • Alinia, M., R. Nopour, M. M. Aghdam, and R. Hedayati. 2023. “The Effect of Auxeticity on the Vibration of Conical Sandwich Shells with Ring Support Under Various Boundary Conditions.” Engineering Analysis with Boundary Elements 152: 130–147. https://doi.org/10.1016/j.enganabound.2023.04.001
  • Alomarah, A., S. H. Masood, I. Sbarski, B. Faisal, Z. Gao, and D. Ruan. 2020. “Compressive Properties of 3D Printed Auxetic Structures: Experimental and Numerical Studies.” Virtual and Physical Prototyping 15 (1): 1–21. https://doi.org/10.1080/17452759.2019.1644184
  • Angili, S. N., M. R. Morovvati, M. Kardan-Halvaei, S. Saber-Samandari, K. Razmjooee, A. M. Abed, D. Toghraie, and A. Khandan. 2022. “Fabrication and Finite Element Simulation of Antibacterial 3D Printed Poly L-Lactic Acid Scaffolds Coated with Alginate/Magnesium Oxide for Bone Tissue Regeneration.” International Journal of Biological Macromolecules.
  • Atashpaz-Gargari, E., and C. Lucas. 2007. “Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition.” In 2007 IEEE Congress on Evolutionary Computation, 4661–4667. Singapore: Ieee.
  • Ayar, M., A. Isazadeh, F. S. Gharehchopogh, and M. Seyedi. 2023. “NSICA: Multi-objective Imperialist Competitive Algorithm for Feature Selection in Arrhythmia Diagnosis.” Computers in Biology and Medicine 161: 107025. https://doi.org/10.1016/j.compbiomed.2023.107025
  • Banadaki, Y., N. Razaviarab, H. Fekrmandi, G. Li, P. Mensah, S. Bai, and S. Sharifi. 2021. “Automated Quality and Process Control for Additive Manufacturing using Deep Convolutional Neural Networks.” Recent Progress in Materials 4 (1), https://doi.org/10.21926/rpm.2201005.
  • Benedetti, M., A. Du Plessis, R. Ritchie, M. Dallago, S. M. J. Razavi, and F. Berto. 2021. “Architected Cellular Materials: A Review on Their Mechanical Properties Towards Fatigue-tolerant Design and Fabrication.” Materials Science and Engineering: R: Reports 144: 100606. https://doi.org/10.1016/j.mser.2021.100606
  • Birman, V., and G. A. Kardomateas. 2018. “Review of Current Trends in Research and Applications of Sandwich Structures.” Composites Part B: Engineering 142: 221–240. https://doi.org/10.1016/j.compositesb.2018.01.027
  • Bohara, R. P., S. Linforth, T. Nguyen, A. Ghazlan, and T. Ngo. 2021. “Novel Lightweight High-energy Absorbing Auxetic Structures Guided by Topology Optimisation.” International Journal of Mechanical Sciences 211: 106793. https://doi.org/10.1016/j.ijmecsci.2021.106793
  • Bohara, R. P., S. Linforth, T. Nguyen, A. Ghazlan, and T. Ngo. 2023. “Anti-blast and-impact Performances of Auxetic Structures: A Review of Structures, Materials, Methods, and Fabrications.” Engineering Structures 276: 115377. https://doi.org/10.1016/j.engstruct.2022.115377
  • Bronder, S., M. Adorna, T. Fíla, P. Koudelka, J. Falta, O. Jiroušek, and A. Jung. 2021. “Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization.” Advanced Engineering Materials 23 (5): 2001393. https://doi.org/10.1002/adem.202001393.
  • Bühring, J., M. Nuño, and K.-U. Schröder. 2021. “Additive Manufactured Sandwich Structures: Mechanical Characterization and Usage Potential in Small Aircraft.” Aerospace Science and Technology 111: 106548. https://doi.org/10.1016/j.ast.2021.106548
  • Cai, J., H. Yang, T. Lai, and K. Xu. 2023. “A new Approach for Optimal Chiller Loading Using an Improved Imperialist Competitive Algorithm.” Energy and Buildings, 112835. https://doi.org/10.1016/j.enbuild.2023.112835
  • Dadras, H., A. Teimouri, R. Barbaz-Isfahani, and S. Saber-Samandari. 2023. “Indentation, Finite Element Modeling and Artificial Neural Network Studies on Mechanical Behavior of GFRP Composites in an Acidic Environment.” Journal of Materials Research and Technology 24: 5042–5058. https://doi.org/10.1016/j.jmrt.2023.04.146
  • Dehghani, M., M. Mashayekhi, and M. Sharifi. 2021. “An Efficient Imperialist Competitive Algorithm with Likelihood Assimilation for Topology, Shape and Sizing Optimization of Truss Structures.” Applied Mathematical Modelling 93: 1–27. https://doi.org/10.1016/j.apm.2020.11.044
  • Edelen, D. L., III and H. A. Bruck. 2022. “Predicting Failure Modes of 3D-printed Multi-material Polymer Sandwich Structures from Process Parameters.” Journal of Sandwich Structures & Materials 24 (2): 1049–1075. https://doi.org/10.1177/10996362211020445
  • Francisco, M. B., J. L. J. Pereira, S. S. da Cunha Jr, and G. F. Gomes. 2023. “Design Optimization of a Sandwich Composite Tube with Auxetic Core Using Multiobjective Lichtenberg Algorithm Based on Metamodelling.” Engineering Structures 281: 115775. https://doi.org/10.1016/j.engstruct.2023.115775
  • Gao, Q., and W.-H. Liao. 2021. “Energy Absorption of Thin Walled Tube Filled with Gradient Auxetic Structures-theory and Simulation.” International Journal of Mechanical Sciences 201: 106475. https://doi.org/10.1016/j.ijmecsci.2021.106475
  • Ghavidelnia, N., M. Bodaghi, and R. Hedayati. 2020. “Femur Auxetic Meta-implants with Tuned Micromotion Distribution.” Materials 14 (1): 114. https://doi.org/10.3390/ma14010114
  • Ghavidelnia, N., M. Bodaghi, and R. Hedayati. 2021. “Idealized 3D Auxetic Mechanical Metamaterial: An Analytical, Numerical, and Experimental Study.” Materials 14 (4): 993. https://doi.org/10.3390/ma14040993
  • Golalipour, K. 2023. “A Novel Permutation-diffusion Technique for Image Encryption Based on the Imperialist Competitive Algorithm.” Multimedia Tools and Applications 82 (1): 725–746. https://doi.org/10.1007/s11042-022-12883-3
  • Hamrouni, A., J.-L. Rebiere, A. El Mahi, M. Beyaoui, and M. Haddar. 2023. “Experimental and Finite Element Analyses of a 3D Printed Sandwich with an Auxetic or Non-auxetic Core.” Journal of Sandwich Structures & Materials 177: 10996362231151454.
  • Hosseinkhani, A., D. Younesian, M. Ranjbar, and F. Scarpa. 2021. “Enhancement of the Vibro-acoustic Performance of Anti-tetra-chiral Auxetic Sandwich Panels using Topologically Optimized Local Resonators.” Applied Acoustics 177: 107930. https://doi.org/10.1016/j.apacoust.2021.107930
  • Ibarra, D. S., J. Mathews, F. Li, H. Lu, G. Li, and J. Chen. 2022. “Deep Learning for Predicting the Thermomechanical Behavior of Shape Memory Polymers.” Polymer 261: 125395. https://doi.org/10.1016/j.polymer.2022.125395
  • Ingrole, A., A. Hao, and R. Liang. 2017. “Design and Modeling of Auxetic and Hybrid Honeycomb Structures for in-plane Property Enhancement.” Materials & Design 117: 72–83. https://doi.org/10.1016/j.matdes.2016.12.067
  • Janarthanan, S., T. Ganesh Kumar, S. Janakiraman, R. K. Dhanaraj, and M. A. Shah. 2022. “An Efficient Multispectral Image Classification and Optimization Using Remote Sensing Data.” Journal of Sensors 2022. https://doi.org/10.1155/2022/2004716
  • Joseph, A., V. Mahesh, and D. Harursampath. 2021. “On the Application of Additive Manufacturing Methods for Auxetic Structures: A Review.” Advances in Manufacturing 9 (3): 342–368. https://doi.org/10.1007/s40436-021-00357-y
  • Kamarian, S., and J.-i. Song. 2023. “Global Buckling Analysis and Weight Minimization of Honeycomb Sandwich Beams Under Humid Environments Using an Analytical Model and Imperialist Competitive Algorithm.” Mechanics Based Design of Structures and Machines, 1–22. https://doi.org/10.1080/15397734.2023.2201618.
  • Kamarian, S., R. Yu, and J.-i. Song. 2022. “Synergistic Effects of Halloysite Nanotubes with Metal and Phosphorus Additives on the Optimal Design of Eco-friendly Sandwich Panels with Maximum Flame Resistance and Minimum Weight.” Nanotechnology Reviews 11 (1): 252–265. https://doi.org/10.1515/ntrev-2022-0014.
  • Kanani, A. Y., and A. Kennedy. 2023. “Experimental and Numerical Analysis of Additively Manufactured Foamed Sandwich Beams.” Composite Structures 312: 116866. https://doi.org/10.1016/j.compstruct.2023.116866
  • Kaveh, A., P. Rahmani, and A. D. Eslamlou. 2022. “An Efficient Hybrid Approach Based on Harris Hawks Optimization and Imperialist Competitive Algorithm for Structural Optimization.” Engineering with Computers 38 (S2): 1555–1583. https://doi.org/10.1007/s00366-020-01258-7.
  • Kaveh, A., and F. Rajabi. 2022. “Optimum Structural Design of Spatial Truss Structures via Migration-based Imperialist Competitive Algorithm.” Scientia Iranica 29 (6): 2995–3015.
  • Kelkar, P. U., H. S. Kim, K.-H. Cho, J. Y. Kwak, C.-Y. Kang, and H.-C. Song. 2020. “Cellular Auxetic Structures for Mechanical Metamaterials: A Review.” Sensors 20 (11): 3132. https://doi.org/10.3390/s20113132
  • Khalvandi, A., S. Saber-Samandari, and M. M. Aghdam. 2022. “Application of Artificial Neural Networks to Predict Young's Moduli of Cartilage Scaffolds: An in-vitro and Micromechanical Study.” Biomaterials Advances, 212768. https://doi.org/10.1016/j.bioadv.2022.212768
  • Kolken, H., K. Lietaert, T. van der Sloten, B. Pouran, A. Meynen, G. Van Loock, H. Weinans, L. Scheys, and A. A. Zadpoor. 2020. “Mechanical Performance of Auxetic Meta-Biomaterials.” journal of the Mechanical Behavior of Biomedical Materials 104: 103658. https://doi.org/10.1016/j.jmbbm.2020.103658.
  • Madke, R. R., and R. Chowdhury. 2020. “Anti-impact Behavior of Auxetic Sandwich Structure with Braided Face Sheets and 3D Re-entrant Cores.” Composite Structures 236: 111838. https://doi.org/10.1016/j.compstruct.2019.111838
  • Ncir, N., and N. El Akchioui. 2023. “An Advanced Intelligent MPPT Control Strategy Based on the Imperialist Competitive Algorithm and Artificial Neural Networks.” Evolutionary Intelligence, 1–25.
  • Pahlavani, H., M. Amani, M. C. Saldívar, J. Zhou, M. J. Mirzaali, and A. A. Zadpoor. 2022a. “Deep Learning for the Rare-event Rational Design of 3D Printed Multi-material Mechanical Metamaterials.” Communications Materials 3 (1): 46. https://doi.org/10.1038/s43246-022-00270-2
  • Pahlavani, H., K. Tsifoutis-Kazolis, P. Mody, J. Zhou, M. J. Mirzaali, and A. A. Zadpoor. 2022b. “Deep Learning for Size-agnostic Inverse Design of Random-network 3D Printed Mechanical Metamaterials.” arXiv preprint arXiv:2212.12047 1–41. https://arxiv.org/abs/2212.12047
  • Park, E. B., Y. C. Jeong, and K. Kang. 2023. “A Novel Auxetic Sandwich Panel for use in Structural Applications: Fabrication and Parametric Study.” Materials Today Communications 34: 105383. https://doi.org/10.1016/j.mtcomm.2023.105383
  • Peng, C., K. Fox, M. Qian, H. Nguyen-Xuan, and P. Tran. 2021. “3D Printed Sandwich Beams with Bioinspired Cores: Mechanical Performance and Modelling.” Thin-Walled Structures 161: 107471. https://doi.org/10.1016/j.tws.2021.107471
  • Pereira, D., F. P. Alves, L. Reis, M. Leite, A. M. Deus, M. Sardinha, and M. F. Vaz. 2023. “Cellular Lattice Cores of Sandwich Panels Fabricated by Additive Manufacturing: Effect of Dimensions and Relative Density on Mechanical Behaviour.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 237 (5): 1188–1201. https://doi.org/10.1177/14644207221138003.
  • Rajpal, R., K. Lijesh, and K. Gangadharan. 2018. “Parametric Studies on Bending Stiffness and Damping Ratio of Sandwich Structures.” Additive Manufacturing 22: 583–591. https://doi.org/10.1016/j.addma.2018.05.039
  • Schaedler, T. A., and W. B. Carter. 2016. “Architected Cellular Materials.” Annual Review of Materials Research 46 (1): 187–210. https://doi.org/10.1146/annurev-matsci-070115-031624
  • Shah, I. A., R. Khan, S. S. R. Koloor, M. Petrů, S. Badshah, S. Ahmad, and M. Amjad. 2022. “Finite Element Analysis of the Ballistic Impact on Auxetic Sandwich Composite Human Body Armor.” Materials 15 (6): 2064. https://doi.org/10.3390/ma15062064.
  • Vyavahare, S., S. Teraiya, and S. Kumar. 2023. “FDM Manufactured Auxetic Structures: An Investigation of Mechanical Properties Using Machine Learning Techniques.” International Journal of Solids and Structures 265: 112126. https://doi.org/10.1016/j.ijsolstr.2023.112126
  • Wang, S., C. Deng, O. Ojo, B. Akinrinlola, J. Kozub, and N. Wu. 2022. “Design and Modeling of a Novel Three Dimensional Auxetic Reentrant Honeycomb Structure for Energy Absorption.” Composite Structures 280: 114882. https://doi.org/10.1016/j.compstruct.2021.114882
  • Wang, L., and H.-T. Liu. 2021. “Parameter Optimization of Bidirectional Re-entrant Auxetic Honeycomb Metamaterial Based on Genetic Algorithm.” Composite Structures 267: 113915. https://doi.org/10.1016/j.compstruct.2021.113915
  • Zamani, M. H., M. Heidari-Rarani, and K. Torabi. 2022. “Optimal Design of a Novel Graded Auxetic Honeycomb Core for Sandwich Beams Under Bending Using Digital Image Correlation (DIC).” Composite Structures 286: 115310. https://doi.org/10.1016/j.compstruct.2022.115310
  • Zhou, J., H. Liu, J. P. Dear, B. G. Falzon, and Z. Kazancı. 2023. “Comparison of Different Quasi-static Loading Conditions of Additively Manufactured Composite Hexagonal and Auxetic Cellular Structures.” International Journal of Mechanical Sciences 244: 108054. https://doi.org/10.1016/j.ijmecsci.2022.108054
  • Zolfagharian, A., L. Durran, S. Gharaie, B. Rolfe, A. Kaynak, and M. Bodaghi. 2021. “4D Printing Soft Robots Guided by Machine Learning and Finite Element Models.” Sensors and Actuators A: Physical 328: 112774. https://doi.org/10.1016/j.sna.2021.112774

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.