1,754
Views
35
CrossRef citations to date
0
Altmetric
Review Articles

Therapeutic advances in wound healing

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2-22 | Received 25 Nov 2019, Accepted 08 Feb 2020, Published online: 26 Feb 2020

References

  • Sorg H, Tilkorn DJ, Hager S, et al. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1–2):81–94.
  • Järbrink K, Ni G, Sönnergren H, et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Syst Rev. 2016;5(1):152.
  • Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care. 2019;8(2):39–48.
  • Kirsner RS. The wound healing society chronic wound ulcer healing guidelines update of the 2006 guidelines—blending old with new. Wound Repair Regen. 2016;24(1):110–111.
  • Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–771.
  • Gainza G, Villullas S, Pedraz JL, et al. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomed Nanotechnol Biol Med. 2015;11(6):1551–1573.
  • Smolle C, Cambiaso-Daniel J, Forbes AA, et al. Recent trends in burn epidemiology worldwide: a systematic review. Burns. 2017;43(2):249–257.
  • Peck MD. Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns. 2011;37(7):1087–1100.
  • Hop MJ, Polinder S, van der Vlies CH, et al. Costs of burn care: a systematic review. Wound Repair Regen. 2014;22(4):436–450.
  • Ahn CS, Maitz P. The true cost of burn. Burns. 2012;38(7):967–974.
  • Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453(7193):314–321.
  • Wang P-H, Huang B-S, Horng H-C, et al. Wound healing. J Chin Med Assoc. 2018;81(2):94–101.
  • Gauglitz GG, Korting HC, Pavicic T, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17(1–2):113–125.
  • Harvey C. Wound healing. Orthop Nurs. 2005;24(2):143–149.
  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610.
  • Kasuya A, Tokura Y. Attempts to accelerate wound healing. J Dermatol Sci. 2014;76(3):169–172.
  • Martins-Green M, Petreaca M, Wang L. Chemokines and their receptors are key players in the orchestra that regulates wound healing. Adv Wound Care (New Rochelle). 2013;2(7):327–347.
  • Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.
  • Simões D, Miguel SP, Ribeiro MP, et al. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm. 2018;127:130–141.
  • Thiruvoth FM, Mohapatra DP, Sivakumar DK, et al. Current concepts in the physiology of adult wound healing. Plast Aesthet Res. 2015;2(5):250–256.
  • Vig K, Chaudhari A, Tripathi S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4):789.
  • Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–870.
  • Xia YP, Zhao Y, Marcus J, et al. Effects of keratinocyte growth factor-2 (KGF-2) on wound healing in an ischaemia-impaired rabbit ear model and on scar formation. J Pathol. 1999;188(4):431–438.
  • Opalenik SR, Davidson JM. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J. 2005;19:1561–1563.
  • Liu X, Lee P, Ho C, et al. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5(3):468–475.
  • Yannas IV, Tzeranis DS, So P. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen. 2017;25(2):177–191.
  • Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13:7–12.
  • Lovvorn HN, Cheung DT, Nimni ME, et al. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J Pediatr Surg. 1999;34(1):218–223.
  • Levenson SM, Geever EF, Crowley LV, et al. The healing of rat skin wounds. Ann Surg. 1965;161:293–308.
  • Toriseva M, Kahari V-M. Proteinases in cutaneous wound healing. Cell Mol Life Sci. 2009;66(2):203–224.
  • Ovington LG. Advances in wound dressings. Clin Dermatol. 2007;25(1):33–38.
  • Dhivya S, Padma VV, Santhini E. Wound dressings – a review. Biomedicine. 2015;5(4):22.
  • Woodford N, Livermore DM. Infections caused by Gram-positive bacteria: a review of the global challenge. J Infect. 2009;59:S4–S16.
  • Brandt O, Mildner M, Egger AE, et al. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomed Nanotechnol Biol Med. 2012;8(4):478–488.
  • Konop M, Damps T, Misicka A, et al. Certain aspects of silver and silver nanoparticles in wound care: a minireview. J Nanomater. 2016;2016:1–10.
  • Munteanu A, Florescu IP, Nitescu C. A modern method of treatment: the role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds. J Med Life. 2016;9(3):306–315.
  • Sarabahi S. Recent advances in topical wound care. Indian J Plast Surg. 2012;45:379–387.
  • Graham C. The role of silver in wound healing. Br J Nurs. 2005;14(Suppl. 5):S22–S28. S24, S26 passim.
  • Lansdown A. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34.
  • Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 2006;1(4):441–449.
  • Carter MJ, Tingley-Kelley K, Warriner RA. Silver treatments and silver-impregnated dressings for the healing of leg wounds and ulcers: a systematic review and meta-analysis. J Am Acad Dermatol. 2010;63(4):668–679.
  • Saleem M, Nazir M, Ali MS, et al. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep. 2010;27(2):238–254.
  • Cooper R. Honey in wound care: antibacterial properties. GMS Krankenhhyg Interdiszip. 2007;2(2):Doc51.
  • Al-Waili N, Salom K, Al-Ghamdi AA. Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice. ScientificWorldJournal. 2011;11:766–787.
  • Molan PC. The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds. 2006;5(1):40–54.
  • Eddy JJ, Gideonsen MD. Topical honey for diabetic foot ulcers. J Fam Pract. 2005;54(6):533–535.
  • Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):2392.
  • Rosa JM, Bonato LB, Mancuso CB, et al. Antimicrobial wound dressing films containing essential oils and oleoresins of pepper encapsulated in sodium alginate films. Cienc Rural. 2018;48(3):e20170740.
  • Liakos I, Rizzello L, Hajiali H, et al. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J Mater Chem B. 2015;3(8):1583–1589.
  • Semeniuc CA, Pop CR, Rotar AM. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal. 2017;25(2):403–408.
  • Dai T, Tanaka M, Huang Y-Y, et al. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011;9(7):857–879.
  • Ahmed S, Ahmad M. Chitosan based dressings for wound care. Immunochem Immunopathol. 2015;1:106–111.
  • Goy RC, Britto Dd, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros Scielo. 2009;19(3):241–247.
  • Azad AK, Sermsintham N, Chandrkrachang S, et al. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater. 2004;69(2):216–222.
  • Ferreira MC, Paggiaro AO, Isaac C, et al. Substitutos cutâneos: conceitos atuais e proposta de classificação. Rev Bras Cir Plást. 2011;26(4):696–702.
  • Paul W. Advances in wound healing materials: science and skin engineering. Smithers Rapra; 2015. ISBN: 1909030384, 9781909030381.
  • Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Am J Clin Dermatol. 2001;2(5):305–313.
  • Sheridan RL, Moreno C. Skin substitutes in burns. Burns. 2001;27(1):92.
  • Metcalfe AD, Ferguson M. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4(14):413–437.
  • Shores JT, Gabriel A, Gupta S. Skin substitutes and alternatives: a review. Adv Skin Wound Care. 2007;20(9 Pt 1):493–508.
  • Balasubramani M, Kumar TR, Babu M. Skin substitutes: a review. Burns. 2001;27(5):534–544.
  • Kumar P. Classification of skin substitutes. Burns. 2008;34(1):148–149.
  • Vyas SK, Vasconez CH. Wound healing: biologics, skin substitutes, biomembranes and scaffolds. Healthcare. 2014;2(3):356–400.
  • Eskandarlou M, Azimi M, Rabiee S, et al. The healing effect of amniotic membrane in burn patients. World J Plast Surg. 2016;5(1):39–44.
  • Andonovska D, Dzokic G, Spasevska L, et al. The advantages of the application of amnion membrane in the treatment of burns. Prilozi. 2008;29(1):183–198.
  • Fraser JF, Cuttle L, Kempf M, et al. A randomised controlled trial of amniotic membrane in the treatment of a standardised burn injury in the merino lamb. Burns. 2009;35(7):998–1003.
  • Frade MAC, Assis RVC, de Coutinho Netto J, et al. The vegetal biomembrane in the healing of chronic venous ulcers. An Bras Dermatol. 2012;87(1):45–51.
  • Kumar RJ, Kimble RM, Boots R, et al. Treatment of partial-thickness burns: a prospective, randomized trial using TranscyteTM. ANZ J Surg. 2004;74(8):622–626.
  • Lukish JR, Eichelberger MR, Newman KD, et al. The use of a bioactive skin substitute decreases length of stay for pediatric burn patients. J Pediatr Surg. 2001;36(8):1118–1121.
  • Nathoo R, Howe N, Cohen G. Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol. 2014;7:44–48.
  • Horch RE, Kopp J, Kneser U, et al. Tissue engineering of cultured skin substitutes. J Cell Mol Med. 2005;9(3):592–608.
  • Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–412.
  • Ortega-Zilic N, Hunziker T, Läuchli S, et al. EpiDex® Swiss Field Trial 2004–2008. Dermatology. 2010;221(4):365–372.
  • Davison-Kotler E, Sharma V, Kang NV, et al. A universal classification system of skin substitutes inspired by factorial design. Tissue Eng B Rev. 2018;24(4):279–288.
  • Ramakrishnan M, Babu M, Jayaraman V, et al. Untold story of collagen dressings. Indian J Burns. 2014;22(1):33–36.
  • Harper C. Permacol: clinical experience with a new biomaterial. Hosp Med. 2001;62(2):90–95.
  • Balayssac D, Poinas AC, Pereira B, et al. Use of permacol in parietal and general surgery: a bibliographic review. Surg Innov. 2013;20(2):176–182.
  • Mostow EN, Haraway GD, Dalsing M, et al. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–843.
  • Niezgoda JA, Van Gils CC, Frykberg RG, et al. Randomized clinical trial comparing OASIS wound matrix to Regranex gel for diabetic ulcers. Adv Skin Wound Care. 2005;18(5):258–266.
  • Min JH, Yun IS, Lew DH, et al. The use of matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg. 2014;41(4):330–336.
  • Ryssel H, Gazyakan E, Germann G, et al. The use of MatriDerm® in early excision and simultaneous autologous skin grafting in burns—a pilot study. Burns. 2008;34(1):93–97.
  • Choi J-Y, Kim S-H, Oh G-J, et al. Management of defects on lower extremities with the use of matriderm and skin graft. Arch Plast Surg. 2014;41(4):337–343.
  • Cervelli V, Lucarini L, Cerretani C, et al. The use of Matriderm® and autologous skin grafting in the treatment of diabetic ulcers: a case report. Int Wound J. 2010;7(4):291–296.
  • Haslik W, Kamolz L-P, Nathschläger G, et al. First experiences with the collagen-elastin matrix Matriderm® as a dermal substitute in severe burn injuries of the hand. Burns. 2007;33(3):364–368.
  • Jeon H, Kim J, Yeo H, et al. Treatment of diabetic foot ulcer using matriderm in comparison with a skin graft. Arch Plast Surg. 2013;40(4):403–408.
  • Delli Santi G, La Greca C, Bruno A, et al. The use of dermal regeneration template (Matriderm(R) 1 mm) for reconstruction of a large full-thickness scalp and calvaria exposure. J Burn Care Res. 2016;37(5):e497–e498.
  • Límová M. Active wound coverings: bioengineered skin and dermal substitutes. Surg Clin North Am. 2010;90(6):1237–1255.
  • Mathur M, De A, Gore M. Microbiological assessment of cadaver skin grafts received in a Skin Bank. Burns. 2009;35(1):104–106.
  • Wainwright D, Madden M, Luterman A, et al. Clinical evaluation of an acellular allograft dermal matrix in full-thickness burns. J Burn Care Rehabil. 1996;17(2):124–136.
  • Achauer BM, VanderKam VM, Celikoz B, et al. Augmentation of facial soft-tissue defects with Alloderm dermal graft. Ann Plast Surg. 1998;41(5):503–507.
  • Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 2004;52(2):188–194.
  • Breuing KH, Warren SM. Immediate bilateral breast reconstruction with implants and inferolateral AlloDerm slings. Ann Plast Surg. 2005;55(3):232–239.
  • Jacobsen G, Easter D. Allograft vs xenograft: practical considerations for biologic scaffolds; 2009. [cited 2019 Oct]. p. 1–12. https://cme.ucsd.edu/biologicscaffolds
  • Troy J, Karlnoski R, Downes K, et al. The use of EZ Derm® in partial-thickness burns: an institutional review of 157 patients. Eplasty. 2013;13:e14.
  • Reynolds M, Kelly DA, Walker NJ, et al. Use of Integra in the management of complex hand wounds from cancer resection and nonburn trauma. Hand (New York, NY). 2018;13(1):74–79.
  • Chang DK, Louis MR, Gimenez A, et al. The basics of Integra dermal regeneration template and its expanding clinical applications. Semin Plast Surg. 2019;33:185–189.
  • MacEwan MR, MacEwan S, Kovacs TR, et al. What makes the optimal wound healing material? A review of current science and introduction of a synthetic nanofabricated wound care scaffold. Cureus. 2017;9(10):e1736.
  • Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7(1):1–21.
  • Shpichka A, Butnaru D, Bezrukov EA, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019;10(1):94.
  • Barrientos S, Brem H, Stojadinovic O, et al. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 2014;22(5):569–578.
  • Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4(4):411–420.
  • Pierce GF, Mustoe TA, Altrock BW, et al. Role of platelet-derived growth factor in wound healing. J Cell Biochem. 1991;45(4):319–326.
  • European Public Assessment Report (EPAR). EPAR summary for the public – Regranex [Internet]; 2010; [cited 2019 Aug 17]. Available from: https://www.ema.europa.eu/en/documents/overview/regranex-epar-summary-public_en.pdf.
  • Barrientos S, Stojadinovic O, Golinko MS, et al. Perspective article: growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.
  • Ohura T, Nakajo T, Moriguchi T, et al. Clinical efficacy of basic fibroblast growth factor on pressure ulcers: case-control pairing study using a new evaluation method. Wound Repair Regen. 2011;19(5):542–551.
  • Olympus Biotech Corporation. The TRAfermin in neuropathic diabetic foot ulcer study [Internet]; 2014; [cited 2019 Aug 17]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01217476?view=results.
  • Okabe K, Hayashi R, Aramaki-Hattori N, et al. Wound treatment using growth factors. Mod Plast Surg. 2013;3:108–112.
  • Robson MC, Phillips TJ, Falanga V, et al. Randomized trial of topically applied repifermin (recombinant human keratinocyte growth factor-2) to accelerate wound healing in venous ulcers. Wound Repair Regen. 2001;9(5):347–352.
  • Berlanga J, Fernandez JI, Lopez E, et al. Heberprot-P: a novel product for treating advanced diabetic foot ulcer. MEDICC Rev. 2013;15(1):11–15.
  • Fernández-Montequín JI, Betancourt BY, Leyva-Gonzalez G, et al. Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: treatment up to complete wound closure. Int Wound J. 2009;6(1):67–72.
  • Dumantepe M, Fazliogullari O, Seren M, et al. Efficacy of intralesional recombinant human epidermal growth factor in chronic diabetic foot ulcers. Growth Fact. 2015;33(2):128–132.
  • Mohan VK. Recombinant human epidermal growth factor (REGEN-D; 150): effect on healing of diabetic foot ulcers. Diabetes Res Clin Pract. 2007;78(3):405–411.
  • Tuyet H, Le Nguyen Quynh TT, Vo Hoang Minh H, et al. The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J. 2009;6(2):159–166.
  • Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann NY Acad Sci. 2018;1411(1):153–165.
  • Keşkek SO, Kırım S, Karaca A, et al. Low serum magnesium levels and diabetic foot ulcers. Pak J Med Sci. 2013;29:1329–1333.
  • Razzaghi R, Pidar F, Momen-Heravi M, et al. Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. 2018;181(2):207–215.
  • Afzali H, Jafari Kashi AH, Momen-Heravi M, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2019;27(3):277–284.
  • Lin P-H, Sermersheim M, Li H, et al. Zinc in wound healing modulation. Nutrients. 2017;10(1):16.
  • Momen-Heravi M, Barahimi E, Razzaghi R, et al. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2017;25:512–520.
  • Barchitta M, Maugeri A, Favara G, et al. Nutrition and wound healing: an overview focusing on the beneficial effects of curcumin. Int J Mol Sci. 2019;20(5):1119.
  • Razzaghi R, Pourbagheri H, Momen-Heravi M, et al. The effects of vitamin D supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complications. 2017;31(4):766–772.
  • Park KU, Moquin K. Novel use of external tissue expander for management of sternal wound dehiscence. Ann Thorac Surg. 2015;100(4):e81–e83.
  • Razzak MA, Hossain MS, Radzi ZB, et al. Cellular and molecular responses to mechanical expansion of tissue. Front Physiol. 2016;7:540.
  • Topaz M. Invited commentary: external tissue expansion and tension relief systems for improved utilisation of the viscoelastic properties of the skin in wound closure. Indian J Plast Surg. 2014;47:467–468.
  • Arain AR, Cole K, Sullivan C, et al. Tissue expanders with a focus on extremity reconstruction. Expert Rev Med Devices. 2018;15(2):145–155.
  • Lasheen AE, Saad K, Raslan M. External tissue expansion in head and neck reconstruction. J Plast Reconstr Aesthet Surg. 2009;62(8):e251–e254.
  • Cunha MS, Nakamoto HA, Herson MR, et al. Tissue expander complications in plastic surgery: a 10-year experience. Rev Hosp Clin. 2002;57(3):93–97.
  • Bajoghli AA, Yoo JY, Faria DT. Utilization of a new tissue expander in the closure of a large Mohs surgical defect. J Drugs Dermatol. 2010;9(2):149–151.
  • Manista GC, Dennis A, Kaminsky M. Surgical management of compartment syndrome and the gradual closure of a fasciotomy wound using a DermaClose device. Trauma Case Rep. 2018;14:1–4.
  • Huh J, Parekh SG. Use of a continuous external tissue expander in total ankle arthroplasty: a novel augment to wound closure. Foot Ankle Spec. 2016;9(1):43–47.
  • Nielson DL, Wu SC, Armstrong DG. Delayed primary closure of diabetic foot wounds using the DermaCloseTM RC tissue expander. Foot Ankle J. 2008;1:3.
  • Topaz M, Carmel N-N, Silberman A, et al. The TopClosure® 3S system, for skin stretching and a secure wound closure. Eur J Plast Surg. 2012;35(7):533–543.
  • Katzengold R, Topaz M, Gefen A. Tissue loads applied by a novel medical device for closing large wounds. J Tissue Viability. 2016;25(1):32–40.
  • Topaz M, Carmel NN, Topaz G, et al. Stress-relaxation and tension relief system for immediate primary closure of large and huge soft tissue defects: an old-new concept: new concept for direct closure of large defects. Medicine (Baltimore). 2014;93(28):e234.
  • Medina C, Spears J, Mitra A. The use of an innovative device for wound closure after upper extremity fasciotomy. Hand (New York, NY). 2008;3(2):146–151.
  • Barnea Y, Gur E, Amir A, et al. Our experience with wisebands: a new skin and soft-tissue stretch device. Plast Reconstr Surg. 2004;113(3):862–869.
  • Johnson TM, Lowe L, Brown MD, et al. Histology and physiology of tissue expansion. J Dermatol Surg Oncol. 1993;19(12):1074–1078.
  • Reimer MW, Yelle J-D, Reitsma B, et al. Management of open abdominal wounds with a dynamic fascial closure system. Can J Surg. 2008;51(3):209–214.
  • Mukhi AN, Minor S. Management of the open abdomen using combination therapy with ABRA and ABThera systems. Can J Surg. 2014;57(5):314–319.
  • Salman AE, Yetişir F, Aksoy M, et al. Use of dynamic wound closure system in conjunction with vacuum-assisted closure therapy in delayed closure of open abdomen. Hernia. 2014;18(1):99–104.
  • Singh N, Bluman E, Starnes B, et al. Dynamic wound closure for decompressive leg fasciotomy wounds. Am Surg. 2008;74(3):217–220.
  • Taylor RC, Reitsma BJ, Sarazin S, et al. Early results using a dynamic method for delayed primary closure of fasciotomy wounds. J Am Coll Surg. 2003;197(5):872–878.
  • Anesäter E. Negative pressure wound therapy: mechanisms of action and protecting exposed blood vessels in the wound bed; [Internet]. Lund University; 2015; [cited 2019 Jul 9]. Available from: https://portal.research.lu.se/portal/en/publications/negative-pressure-wound-therapy–mechanisms-of-action-and-protecting-exposed-blood-vessels-in-the-wound-bed(728ff135-4a5f-483b-8618-c075c9536bbd)/export.html
  • Labanaris AP, Polykandriotis E, Horch RE. The effect of vacuum-assisted closure on lymph vessels in chronic wounds. J Plast Reconstr Aesthet Surg. 2009;62(8):1068–1075.
  • Panayi AC, Leavitt T, Orgill DP. Evidence based review of negative pressure wound therapy. World J Dermatol. 2017;6:1.
  • Orgill DP, Manders EK, Sumpio BE, et al. The mechanisms of action of vacuum assisted closure: more to learn. Surgery. 2009;146(1):40–51.
  • A N, Khan WS, J P. The evidence-based principles of negative pressure wound therapy in trauma and orthopedics. Open Orthop J. 2014;8:168–177.
  • Scherer SS, Pietramaggiori G, Mathews JC, et al. The mechanism of action of the vacuum-assisted closure device. Plast Reconstr Surg. 2008;122(3):786–797.
  • Mattox EA. Reducing risks associated with negative-pressure wound therapy: strategies for clinical practice. Crit Care Nurse. 2017;37(5):67–77.
  • Beral D, Adair R, Peckham-Cooper A, et al. Chronic wound sepsis due to retained vacuum assisted closure foam. BMJ. 2009;338(1):b2269.
  • Hurd T, Rossington A, Trueman P, et al. A retrospective comparison of the performance of two negative pressure wound therapy systems in the management of wounds of mixed etiology. Adv Wound Care. 2017;6(1):33–37.
  • Howard MA, Asmis R, Evans KK, et al. Oxygen and wound care: a review of current therapeutic modalities and future direction. Wound Repair Regen. 2013;21(4):503–511.
  • Sahni T, Hukku S, Jain M, et al. Recent advances in hyperbaric oxygen therapy. Med Update. 2004;14:632–639.
  • Lam G, Fontaine R, Ross FL, et al. Hyperbaric oxygen therapy: exploring the clinical evidence. Adv Skin Wound Care. 2017;30(4):181–190.
  • Dauwe PB, Pulikkottil BJ, Lavery L, et al. Does hyperbaric oxygen therapy work in facilitating acute wound healing: a systematic review. Plast Reconstr Surg. 2014;133:208e–215e.
  • Thom SR. Hyperbaric oxygen: its mechanisms and efficacy. Plast Reconstr Surg. 2011;127:131S–141S.
  • Wounds: a compendium of clinical research and practice; [Internet]. Health Management Publications; 2019; [cited 2019 Aug 6]. Available from: https://www.woundsresearch.com/article/topical-oxygen-and-hyperbaric-oxygen-therapy-use-and-healing-rates-diabetic-foot-ulcers
  • Kaufman H, Gurevich M, Tamir E, et al. Topical oxygen therapy stimulates healing in difficult, chronic wounds: a tertiary centre experience. J Wound Care. 2018;27(7):426–433.
  • Niederauer MQ, Michalek JE, Liu Q, et al. Continuous diffusion of oxygen improves diabetic foot ulcer healing when compared with a placebo control: a randomised, double-blind, multicentre study. J Wound Care. 2018;27(Suppl. 9):S30–S45.
  • Niederauer MQ, Michalek JE, Armstrong DG. A prospective, randomized, double-blind multicenter study comparing continuous diffusion of oxygen therapy to sham therapy in the treatment of diabetic foot ulcers. J Diabetes Sci Technol. 2017;11(5):883–891.
  • Igwegbe I, Onojobi G, Fadojutimi-Akinsiku MO, et al. Case studies evaluating transdermal continuous oxygen for the treatment of chronic sickle cell ulcers. Adv Skin Wound Care. 2015;28(5):206–210.
  • Lowell DPM, Dabp D, Nicklas DPM, et al. Transdermal continuous oxygen therapy as an adjunct for treatment of recalcitrant and painful wounds. Foot Ankle Online J. 2012;2:4.
  • Qureshi AA, Ross KM, Ogawa R, et al. Shock wave therapy in wound healing. Plast Reconstr Surg. 2011;128(6):721e–727e.
  • Dolibog P, Franek A, Brzezińska-Wcisło L, et al. Shockwave therapy in selected soft tissue diseases: a literature review. J Wound Care. 2018;27(9):573–583.
  • Kuo Y-R, Wang C-T, Wang F-S, et al. Extracorporeal shock-wave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen. 2009;17(4):522–530.
  • Zins SR, Amare MF, Tadaki DK, et al. Comparative analysis of angiogenic gene expression in normal and impaired wound healing in diabetic mice: effects of extracorporeal shock wave therapy. Angiogenesis. 2010;13(4):293–304.
  • Schaden W, Thiele R, Kölpl C, et al. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res. 2007;143(1):1–12.
  • Saggini R, Figus A, Troccola A, et al. Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol. 2008;34(8):1261–1271.
  • Wang C-J, Kuo Y-R, Wu R-W, et al. Extracorporeal shockwave treatment for chronic diabetic foot ulcers. J Surg Res. 2009;152(1):96–103.
  • Moretti B, Notarnicola A, Maggio G, et al. The management of neuropathic ulcers of the foot in diabetes by shock wave therapy. BMC Musculoskelet Disord. 2009;10:54.
  • Dumfarth J, Zimpfer D, Vögele-Kadletz M, et al. Prophylactic low-energy shock wave therapy improves wound healing after vein harvesting for coronary artery bypass graft surgery: a prospective, randomized trial. Ann Thorac Surg. 2008;86(6):1909–1913.
  • Ottomann C, Hartmann B, Tyler J, et al. Prospective randomized trial of accelerated re-epithelialization of skin graft donor sites using extracorporeal shock wave therapy. J Am Coll Surg. 2010;211(3):361–367.
  • Omar MTA, Alghadir A, Al-Wahhabi KK, et al. Efficacy of shock wave therapy on chronic diabetic foot ulcer: a single-blinded randomized controlled clinical trial. Diabetes Res Clin Pract. 2014;106(3):548–554.
  • Feehan J, Burrows SP, Cornelius L, et al. Therapeutic applications of polarized light: tissue healing and immunomodulatory effects. Maturitas. 2018;116:11–17.
  • Houreld NN. Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. ScientificWorldJournal. 2014;2014:398412.
  • Jeng S-F, Chen J-A, Chang L-R, et al. Beneficial effect of intense pulsed light on the wound healing in diabetic rats. Lasers Surg Med. 2019.
  • Romanelli M, Piaggesi A, Scapagnini G, et al. Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: the EUREKA trial. J Wound Care. 2018;27(11):744–753. DOI: https://doi.org/10.1002/lsm.23183. [Epub ahead of print].
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–2353.
  • Tian J, Wong KKY, Ho C-M, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007;2(1):129–136.
  • Wong KKY, Cheung SOF, Huang L, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem. 2009;4(7):1129–1135.
  • Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016;24(2):215–222.
  • Leung A, Crombleholme TM, Keswani SG. Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr. 2012;24(3):371–378.
  • Rigo C, Ferroni L, Tocco I, et al. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14(3):4817–4840.
  • Boroumand Z, Golmakani N, Boroumand S. Clinical trials on silver nanoparticles for wound healing. Nanomed J. 2018;5:186–191.
  • Mihai MM, Dima MB, Dima B, et al. Nanomaterials for wound healing and infection control. Materials (Basel, Switzerland). 2019;12:2176.
  • Arafa MG, El-Kased RF, Elmazar MM. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci Rep. 2018;8:13674.
  • Lau P, Bidin N, Islam S, et al. Influence of gold nanoparticles on wound healing treatment in rat model: photobiomodulation therapy. Lasers Surg Med. 2017;49(4):380–386.
  • Leu J-G, Chen S-A, Chen H-M, et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomed Nanotechnol Biol Med. 2012;8(5):767–775.
  • Pivodová V, Franková J, Galandáková A, et al. In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine. 2015;2:7.
  • Yu J, Wang X, Li Y, et al. Synthesis of nerolidol functionalized gold nanoparticles for wound regeneration in people with diabetic foot ulcers in nursing care management. Sci Adv Mater. 2018;10(12):1775–1781.
  • Lu S, Xia D, Huang G, et al. Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids Surf B Biointerfaces. 2010;81(2):406–411.
  • Siddiqi KS, Rahman Tajuddin UA, et al. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. 2018;13:141.
  • Pati R, Mehta RK, Mohanty S, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed Nanotechnol Biol Med. 2014;10(6):1195–1208.
  • Kaushik M, Niranjan R, Ramar T, et al. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl Surf Sci. 2019;479:1169–1177.
  • Christian A, Feltis B, Paul W, et al. Potential for enhanced wound healing with ZnO nanoparticles. Front Bioeng Biotechnol. 2016;4. DOI:https://doi.org/10.3389/conf.FBIOE.2016.01.00895
  • Gao Y, Han Y, Cui M, et al. ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. J Mater Chem B. 2017;5(23):4535–4541.
  • Gong C-P, Luo Y, Pan Y-Y. Novel synthesized zinc oxide nanoparticles loaded alginate-chitosan biofilm to enhanced wound site activity and anti-septic abilities for the management of complicated abdominal wound dehiscence. J Photochem Photobiol B Biol. 2019;192:124–130.
  • Sudheesh Kumar PT, Lakshmanan V-K, Anilkumar TV, et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces. 2012;4(5):2618–2629.
  • Liu Y, Petreaca M, Yao M, et al. Cell and molecular mechanisms of keratinocyte function stimulated by insulin during wound healing. BMC Cell Biol. 2009;10(1):1.
  • Ching Y-H, Sutton TL, Pierpont YN, et al. The use of growth factors and other humoral agents to accelerate and enhance burn wound healing. Eplasty. 2011;11:e41.
  • Achar RAN, Silva TC, Achar E, et al. Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats. Acta Cir Bras. 2014;29(2):125–131.
  • Lima MHM, Caricilli AM, de Abreu LL, et al. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLOS One. 2012;7:e36974.
  • Xu X, Zhu F, Zhang M, et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs. 2013;197(2):103–113.
  • Kaur P, Sharma AK, Nag D, et al. Novel nano-insulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing. Nanomed Nanotechnol Biol Med. 2019;15(1):47–57.
  • Oryan A, Alemzadeh E. Effects of insulin on wound healing: a review of animal and human evidences. Life Sci. 2017;174:59–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.