558
Views
87
CrossRef citations to date
0
Altmetric
Viewpoint

Theoretical understanding of the early visual processes by data compression and data selection

Pages 301-334 | Received 19 Mar 2006, Accepted 27 Apr 2006, Published online: 09 Jul 2009

References

  • Allman J, Miezin F, McGuinness E. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 1985; 8: 407–430
  • Atick JJ, Redlich AN. Towards a theory of early visual processing. Neural Computation 1990; 2: 308–320
  • Atick JJ. Could information theory provide an ecological theory of sensory processing. Network: Computation and Neural Systems 1992; 3: 213–251
  • Atick JJ, Li Z, Redlich AN. Understanding retinal color coding from first principles. Neural Computation 1992; 4(4)559–572
  • Atick JJ, Li Z, Redlich AN. What does post-adaptation color appearance reveal about cortical color representation?. Vision Res. 1993; 33(1)123–129
  • Buchsbaum G, Gottschalk A. Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proc. R. Soc. Lond. B Biol. Sci. 1983; 220(1218)89–113
  • Barlow HB. Possible principles underlying the transformations of sensory messages. Sensory Communication, WA Rosenblith. MIT Press, Cambridge, MA 1961; 217–234
  • Barlow HB. The Ferrier Lecture, 1980: Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. London B 1981; 212: 1–34
  • Bell AJ, Sejnowski TJ. The ‘independent components’ of natural scenes are edge filters. Vision Res. 1997; 23: 3327–3338
  • Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 2002; 14(3)473–491
  • Casagrande VA, Guillery RW, Sherman SM. Cortical function: A view from the thalamus. Progress in Brain Research. Elsevier. 2005; 149, editors
  • Dan Y, Atick JJ, Reid RC. Efficient coding of natural scenes in the lateral geniculate nucleus: Experimental test of a computational theory. J. Neurosci. 1996; 16(10)3351–3362
  • Daubechies I. The lectures on wavelets. SIAM. 1992
  • Dong DW, Atick JJ. Temporal decorrelation: A theory of lagged and non-lagged responses in the lateral geniculate nucleus. Network: Computation in Neural Systems 1995; 6: 159–178
  • Duncan J, Humphreys GW. Visual search and stimulus similarity. Psychological Rev. 1989; 96(3)433–458
  • Field DJ. Relations between the statistics of natural images and the response properties of cortical cells. Journal of Optical Society of America, A 1987; 4(12)2379–2394
  • Field DJ. What the statistics of natural images tell us about visual coding. SPIE, Human vision, visual processing, and digital display. 1989; 1077: 269–276
  • Freeman WT, Adelson EH. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991; 13(9)891–906
  • Gilbert CD, Wiesel TN. Clustered intrinsic connections in cat visual cortex. J. Neurosci. 1983; 3(5)1116–1133
  • Gottlieb JP, Kusunoki M, Goldberg ME. The representation of visual salience in monkey parietal cortex. Nature 1998; 391(6666)481–484
  • Horwitz GD, Albright TD. Paucity of chromatic linear motion detectors in macaque V1. J. Vis. 2005; 5(6)525–533
  • Itti L, Baldi P. Bayesian surprise attracts human attention. Advances in Neural Information Processsing Systems. MIT Press, Cambridge, MA 2006; 19: 1–8, (NIPS2005)
  • Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res. 2000; 40(10–12)1489–1506
  • Jones HE, Grieve KL, Wang W, Sillito AM. Surround suppression in primate V1. J. Neurophysiol. 2001; 86(4)2011–2028
  • Jonides J. Voluntary versus automatic control over the mind's eye's movement. Attention and Performance IX, JB Long, AD Baddeley. Lawrence Erlbaum Associates Inc., Hillsdale, NJ 1981; 187–203
  • Julesz B. Textons, the elements of texture perception, and their interactions. Nature 1981; 290(5802)91–97
  • Kadir T, Brady M. Saliency, scale, and image description. International J. of Computer Vision 2001; 45(2)83–105
  • Kapadia MK, Ito M, Gilbert CD, Westheimer G. Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron 1995; 15(4)843–856
  • Kelly DH. Information capacity of a single retinal channel. IEEE Trans. Information Theory 1962; 8: 221–226
  • Knierim JJ, Van Essen DC. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 1992; 67(4)961–980
  • Koch C, Ullman S. Shifts in selective visual attention: Towards the underlying neural circuitry. Hum. Neurobiol. 1985; 4(4)219–227
  • Lennie P. The cost of cortical computation. Curr. Biol. 2003; 13(6)493–497
  • Lewis A, Garcia R, Zhaoping L. The distribution of visual objects on the retina: Connecting eye movements and cone distributions. Journal of vision 2003; 3(11)893–905
  • Lewis AS, Zhaoping L. Saliency from natural scene statistics. 2005 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC 2005, Program No. 821.11., 2005. Online
  • Lewis AS, Zhaoping L. Are cone sensitivities determined by natural color statistics?. Journal of Vision 2006; 6(3)285–302, http://www.journalofvision.org/6/3/8/
  • Levy WB, Baxter RA. Energy efficient neural codes. Neural Computation 1996; 8(3)531–543
  • Lee TS. Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Analysis and Machine Intelligence 1996; 18: 959–971
  • Lee TS. Computations in the early visual cortex. J. Physiology, Paris 2003; 97(2–3)121–139
  • Li Zhaoping. Different retinal ganglion cells have different functional goals. International Journal of Neural Systems 1992; 3(3)237–248
  • Li Zhaoping, Atick JJ. Towards a theory of striate cortex. Neural Computation 1994a; 6: 127–146
  • Li Zhaoping, Atick JJ. Efficient stereo coding in the multiscale representation. Network: Computation in neural systems 1994b; 5: 1–18
  • Li Zhaoping. Understanding ocular dominance development from binocular input statistics. The neurobiology of computation. Proceeding of Computational Neuroscience Conference 1994. 1995, J Bower. Kluwer Academic Publishers, 397–402
  • Li Zhaoping. A theory of the visual motion coding in the primary visual cortex. Neural Computation 1996; 8(4)705–730
  • Li Z. Primary cortical dynamics for visual grouping. Theoretical aspects of neural computation, KM Wong, I King, D-Y Yeung. Springer-verlag, Singapore January, 1998a; 155, 1998
  • Li Z. A neural model of contour integration in the primary visual cortex. Neural Comput. 1998b; 10(4)903–940
  • Li Z. Visual segmentation without classification: A proposed function for primary visual cortex. Perception. ECVP, OxfordEngland 1998c; 27: 45, 1998, supplement
  • Li Z. Visual segmentation by contextual influences via intra-cortical interactions in primary visual cortex. Network: Computation and neural systems 1999a; 10(2)187–212
  • Li Z. Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc. Natl. Acad. Sci. USA, 1999b; 96(18)10530–10535
  • Li Zhaoping, Dayan P. Computational differences between asymmetrical and symmetrical networks. Network: Computation in Neural Systems 1999; 10(1)59–77
  • Li Z. Pre-attentive segmentation in the primary visual cortex. Spatial Vision 2000; 13(1)25–50
  • Li Z. Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex. Neural Computation 2001; 13(8)1749–1780
  • Li Zhaoping. A saliency map in primary visual cortex. Trends in Cognitive Sciences 2002; 6(1)9–16
  • Linsker R. Perceptual neural organization: Some approaches based on network models and information theory. Annu. Rev. Neurosci. 1990; 13: 257–281
  • Livingstone MS, Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 1984; 4(1)309–356
  • Laughlin SB. A simple coding procedure enhances a neuron's information capacity. Z. Naturforsch [C] 1981; 36: 910–912
  • Meister M, Berry MJ. The neural code of the retina. NEURON 1999; 22(3)435–450
  • Nadal JP, Parga N. Information processing by a perceptron in an unsupervised learning task. Network: Computation and Neural Systems 1993; 4(3)295–312
  • Nadal JP, Parga N. Nonlinear neurons in the low-noise limit: A factorial code maximizes information transfer. Network: Computation and Neural Systems 1994; 5: 565–581
  • Nakayama K, Mackeben M. Sustained and transient components of focal visual attention. Vision Res. 1989; 29(11)1631–1647
  • Nirenberg S, Carcieri SM, Jacobs AL, Latham PE. Retinal ganglion cells act largely as independent encoders. Nature 2001; 411: 698–701
  • Nothdurft HC, Gallant JL, Van Essen DC. Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia. Vis. Neurosci. 1999; 16: 15–34
  • Olshausen BA, Field DJ. Sparse coding with an overcomplete basis set: A strategy employed by V1?. Vision Research 1997; 37: 3311–3325
  • Olshausen BA, Field DJ. How close are we to understanding V1?. Neural Computation 2005; 17: 1665–1699
  • Pashler H. Attention. Psychology Press Ltd, East SussexUK 1998, editor
  • Petrov Y, Zhaoping L. Local correlations, information redundancy, and sufficient pixel depth in natural images. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 2003; 20(1)56–66
  • Puchalla JL, Schneidman E, Harris RA, Berry MJ. Redundancy in the population code of the retina. Neuron 2005; 46(3)493–504
  • Rao RPN, Ballard DH. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive field effects. Nature Neuroscience 1999; 2: 79–87
  • Rockland KS, Lund JS. Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 1983; 216(3)303–318
  • Rubenstein BS, Sagi D. Spatial variability as a limiting factor in texture-discrimination tasks: Implications for performance asymmetries. J. Opt. Soc. Am. A. 1990; 7(9)1632–1643
  • Salinas E, Abbott LF. Do simple cells in primary visual cortex form a tight frame?. Neural Comput. 2000; 12(2)313–335
  • Schreiber W. The measurement of third order probability distributions of television signals. IEEE Trans. Information Theory 1956; 2(3)94–105
  • Schwartz O, Simoncelli EP. Natural signal statistics and sensory gain control. Nat Neurosci. 2001; 4(8)819–825
  • Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 1995; 378: 492–496
  • Simons DJ, Chabris CF. Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception 1999; 28: 1059–1074
  • Simoncelli E, Olshausen B. Natural image statistics and neural representation. Annual Review of Neuroscience 2001; 24: 1193–1216
  • Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: A fresh view of inhibition in the retina. Proc. R. Soc. Lond. B Biol. Sci. 1982; 216(1205)427–459
  • Sziklai G. Some studies in the speed of visual perception. IEEE Transactions on Information Theory 1956; 2(3)125–128
  • Tehovnik EJ, Slocum WM, Schiller PH. Saccadic eye movements evoked by microstimulation of striate cortex. Eur. J. Neurosci. 2003; 17(4)870–878
  • Treisman AM, Gelade G. A feature-integration theory of attention. Cognit. Psychol. 1980; 12(1)97–136
  • Treisman A, Gormican S. Feature analysis in early vision: Evidence from search asymmetries. Psychol. Rev. 1988; 95(1)15–48
  • van Hateren J. A theory of maximizing sensory information. Biol Cybern 1992; 68(1)23–29
  • van Hateren J, Ruderman DL. Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc. Biol. Sciences. 1998; 265(1412)2315–2320
  • Wachtler T, Sejnowski TJ, Albright TD. Representation of color stimuli in awake macaque primary visual cortex. Neuron 2003; 37(4)681–691
  • Wolfe JM, Cave KR, Franzel SL. Guided search: An alternative to the feature integration model for visual search. J. Experimental Psychol. 1989; 15: 419–433
  • Wolfe JM. Visual Search, a review. Attention, H Pashler. Psychology Press Ltd., Hove, East SussexUK 1998; 13–74
  • Zhaoping L. The primary visual cortex creates a bottom-up saliency map. Neurobiology of Attention, L Itti, G Rees, JK Tsotsos. Elsevier. 2005; 570–575, Chapter 93
  • Zhaoping L, Hubner M, Anzai A (2006) Efficient stereo coding in the primary visual cortex and its experimental tests based on optical imaging and single cell data. Presented at Annual Meeting of Computational Neuroscience. Edinburgh, 2006, summer
  • Zhaoping L, May KA. Irrelevance of feature maps for bottom up visual saliency in segmentation and search tasks. 2004 Abstract Viewer/Itinerary Planner. Society for Neurocience, Washington D.C. 2004, Program No. 20.1., Online
  • Zhaoping L, Snowden RJ. A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of color-orientation interference in texture segmentation. Visual Cognition 2006; 14(4–8)911–933
  • Zhaoping L (2006) Overcomplete representation for fast attentional selection by bottom up saliency in the primary visual cortex. Presented at European Conference on Visual Perception. August, 2006
  • Zigmond MJ, Bloom FE, Lndis SC, Roberts JL, Squire LR. Fundamental neuroscience. Academic Press, New York 1999

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.