149
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Effect of neutron capture therapy on the cell cycle of human squamous cell carcinoma cells

, , , , , , & show all
Pages 191-199 | Received 11 Dec 2006, Accepted 04 Oct 2007, Published online: 03 Jul 2009

References

  • Barth R F, Coderre J A, Vicente M G, Blue T E. Boron neutron capture therapy of cancer: Current status and future prospects. Clinical Cancer Research 2005; 11: 3987–4002
  • Boulares A H, Yakovlev A G, Ivanova V, Stoica B A, Wang G, Iyer S, Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. The Journal of Biological Chemistry 1999; 274: 22932–22940
  • Castedo M, Perfettini J L, Roumier T, Raslova H, Yakushijin K, Horne D, Feunteun J, Lenoir G, Medema R, Vainchenker W, Kroemer G. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 2004; 23: 4362–4370
  • Chan T A, Hermeking H, Lengauer C, Kinzler K W, Vogelstein B. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 1999; 401: 616–620
  • Chang B D, Xuan Y, Broude E V, Zhu H, Schott B, Fang J, Roninson I B. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 1999; 18: 4808–4818
  • Coderre J A, Button T M, Micca P L, Fisher C D, Nawrocky M M, Liu H B. Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. International Journal of Radiation Oncology, Biology and Physics 1994; 30: 643–652
  • Coderre J A, Morris G M. The radiation biology of boron neutron capture therapy. Radiation Research 1999; 151: 1–18
  • Concin N, Stimpfl M, Zeillinger C, Wolff U, Hefler L, Sedlak J, Leodolter S, Zeillinger R. Role of p53 in G2/M cell cycle arrest and apoptosis in response to gamma-irradiation in ovarian carcinoma cell lines. International Journal of Oncology 2003; 22: 51–57
  • Dasika G K, Lin S C, Zhao S, Sung P, Tomkinson A, Lee E Y. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 1999; 18: 7883–7899
  • DeWeese T L, Shipman J M, Dillehay L E, Nelson W G. Sensitivity of human prostatic carcinoma cell lines to low dose rate radiation exposure. Journal of Urology 1998; 159: 591–598
  • Dimri G P, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano E E, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America 1995; 92: 9363–9367
  • Dulic V, Kaufmann W K, Wilson S J, Tlsty T D, Lees E, Harper J W, Elledge S J, Reed S I. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 1994; 76: 1013–1023
  • Gallo O, Chiarelli I, Bianchi S, Calzolari A, Simonetti L, Porfirio B. Loss of p53 gene mutation after irradiation is associated with increased aggressiveness in recurring head and neck cancer. Clinical Cancer Research 1996; 2: 1577–1582
  • Harper J W, Adami G R, Wei N, Keyomarsi K, Elledge S J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816
  • Hoffmann I, Clarke P R, Marcote M J, Karsenti E, Draetta G. Phosphorylation and activation of human cdc25-C by cdc2 – cyclin B and its involvement in the self-amplification of MPF at mitosis. The EMBO Journal 1993; 12: 53–63
  • Hollstein M, Sidransky D, Vogelstein B, Harris C C. p53 mutations in human cancers. Science 1991; 253: 49–53
  • Hsieh L L, Wang P F, Chen I H, Wang H M, Chen M C, Chang J T, Cheng A J. Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis 2001; 22: 1497–1503
  • Iwadate Y, Mizoe J, Osaka Y, Yamaura A, Tsujii H. High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. International Journal of Radiation Oncology, Biology and Physics 2001; 50: 803–808
  • Jee Y H, Jeong W I, Kim T H, Hwang I S, Ahn M J, Joo H G, Hong S H, Jeong K S. p53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice. Molecular and Cellular Biochemistry 2005; 270: 21–28
  • Kamida A, Obayashi S, Kato I, Ono K, Suzuki M, Nagata K, Sakurai Y, Yura Y. Effects of boron neutron capture therapy on human oral squamous cell carcinoma in a nude mouse model. International Journal of Radiation Biology 2006; 82: 21–29
  • Kastan M B, Onyekwere O, Sidransky D, Vogelstein B, Craig R W. Participation of p53 protein in the cellular response to DNA damage. Cancer Research 1991; 51: 6304–6311
  • Kastan M B, Zhan Q, el-Deiry W S, Carrier F, Jacks T, Walsh W V, Plunkett B S, Vogelstein B, Fornace A J, Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597
  • Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y. Effectiveness of BNCT for recurrent head and neck malignancies. Applied Radiation and Isotopes 2004; 2061: 1069–1073
  • Kuerbitz S J, Plunkett B S, Walsh W V, Kastan M B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 7491–7495
  • Leach S D, Scatena C D, Keefer C J, Goodman H A, Song S Y, Yang L, Pietenpol J A. Negative regulation of Wee1 expression and Cdc2 phosphorylation during p53-mediated growth arrest and apoptosis. Cancer Research 1998; 58: 3231–3236
  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 1991; 64: 1111–1122
  • Maggiorella L, Deutsch E, Frascogna V, Chavaudra N, Jeanson L, Milliat F, Eschwege F, Bourhis J. Enhancement of radiation response by roscovitine in human breast carcinoma in vitro and in vivo. Cancer Research 2003; 63: 2513–2517
  • Malashicheva A B, Kislyakova T V, Aksenov N D, Osipov K A, Pospelov V A. F9 embryonal carcinoma cells fail to stop at G1/S boundary of the cell cycle after gamma-irradiation due to p21WAF1/CIP1 degradation. Oncogene 2000; 19: 3858–3865
  • Masunaga S, Ono K, Takahashi A, Sakurai Y, Ohnishi K, Kobayashi T, Kinashi Y, Takagaki M, Ohnishi T. Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells. Japanese Journal of Cancer Research 2002; 93: 1366–1377
  • Matsui Y, Asano T, Kenmochi T, Iwakawa M, Imai T, Ochiai T. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status. American Journal of Clinical Oncology 2004; 27: 24–28
  • Matsumura S, Matsumura T, Ozeki S, Fukushima S, Yamazaki H, Inoue T, Inoue T, Furusawa Y, Eguchi-Kasai K. Comparative analysis of G2 arrest after irradiation with 75 keV carbon-ion beams and 137Cs γ-rays in a human lymphoblastoid cell line. Cancer Detection and Prevention 2003; 27: 222–228
  • Matsuoka S, Huang M, Elledge S J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998; 282: 1893–1897
  • McIlwrath A J, Vasey P A, Ross G M, Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: Dependence on wild-type p53 for radiosensitivity. Cancer Research 1994; 54: 3718–3722
  • Millar J B, Russell P. The cdc25 M-phase inducer: An unconventional protein phosphatase. Cell 1992; 68: 407–410
  • Ng C E, Banerjee S K, Pavliv M, Wang G, Raaphorst G P, Aubin R A. p53 status, cellular recovery and cell cycle arrest as prognosticators of in vitro radiosensitivity in human pancreatic adenocarcinoma cell lines. International Journal of Radiation Biology 1999; 75: 1365–1376
  • Obayashi S, Kato I, Ono K, Masunaga S, Suzuki M, Nagata K, Sakurai Y, Yura Y. Delivery of 10boron to oral squamous cell carcinoma using boronophenylalanine and borocaptate sodium for boron neutron capture therapy. Oral Oncology 2004; 40: 474–482
  • O'Connor P M, Ferris D K, Hoffmann I, Jackman J, Draetta G, Kohn K W. Role of the cdc25C phosphatase in G2 arrest induced by nitrogen mustard. Proceedings of the National Academy of Sciences of the United States of America 1994; 91: 9480–9484
  • Offer H, Zurer I, Banfalvi G, Reha'k M, Falcovitz A, Milyavsky M, Goldfinger N, Rotter V. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Research 2001; 61: 88–96
  • Parker L L, Atherton-Fessler S, Lee M S, Ogg S, Falk J L, Swenson K I, Piwnica-Worms H. Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a wee1+ dependent manner. The EMBO Journal 1991; 10: 1255–1263
  • Peng C Y, Graves P R, Thoma R S, Wu Z, Shaw A S, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 1997; 277: 1501–1505
  • Radford I R, Murphy T K. Radiation response of mouse lymphoid and myeloid cell lines. Part III. Different signals can lead to apoptosis and may influence sensitivity to killing by DNA double-strand breakage. International Journal of Radiation Biology 1994; 65: 229–239
  • Roninson I B, Broude E V, Chang B D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resistance Updates 2001; 4: 303–313
  • Roninson I B. Tumor senescence as a determinant of drug response in vivo. Drug Resistance Updates 2002; 5: 204–208
  • Russell P, Nurse P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 1987; 49: 559–567
  • Sanchez Y, Wong C, Thoma R S, Richman R, Wu Z, Piwnica-Worms H, Elledge S J. Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science 1997; 277: 1497–1501
  • Stewart N, Hicks G G, Paraskevas F, Mowat M. Evidence for a second cell cycle block at G2/M by p53. Oncogene 1995; 10: 109–115
  • Syljuasen R G, Sorensen C S, Nylandsted J, Lukas C, Lukas J, Bartek J. Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing Radiation. Cancer Research 2004; 64: 9035–9040
  • Takahashi A, Matsumoto H, Yuki K, Yasumoto J, Kajiwara A, Aoki M, Furusawa Y, Ohnishi K, Ohnishi T. High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. International Journal of Radiation Oncology, Biology and Physics 2004; 60: 591–597
  • Yamazaki Y, Chiba I, Hirai A, Notani K, Kashiwazaki H, Tei K, Totsuka Y, Iizuka T, Kohgo T, Fukuda H. Radioresistance in oral squamous cell carcinoma with p53 DNA contact mutation. American Journal of Clinical Oncology 2003; 26: e124–129
  • Xiong Y, Hannon G J, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.