180
Views
26
CrossRef citations to date
0
Altmetric
Original Article

Imaging tumour-bearing animals using clinical scanners

&
Pages 752-762 | Received 22 Sep 2008, Accepted 19 Mar 2009, Published online: 22 Sep 2009

References

  • Abramyuk A, Schindler S, Koch A, Tokalov S, Haberland U, Abolmaali N. Evaluierung der Tumorblutversorgung in verschiedenen Xenograft-Modellen mit dynamischer CT. RöFo. Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 2008; 180: S200
  • Alejski A, Yuteng C, Rutt B K. Ultra-high-resolution imaging with a clinical MRI. IEEE Instrumentation and Measurement Magazine 2002; 5: 18–23
  • Balaban R S, Hampshire V A. Challenges in small animal noninvasive imaging. ILAR Journal 2001; 42: 248–262
  • Barth R F. Rat brain tumor models in experimental neuro-oncology: The 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. Journal of Neuro-Oncology 1998; 36: 91–102
  • Beckmann N, Mueggler T, Allegrini P R, Laurent D, Rudin M. From anatomy to the target: Contributions of magnetic resonance imaging to preclinical pharmaceutical research. Anatomical Record 2001; 265: 85–100
  • Bernstein M A, Zhou X J, Polzin J A, King K F, Ganin A, Pelc N J, Glover G H. Concomitant gradient terms in phase contrast MR: Analysis and correction. Magnetic Resonance in Medicine 1998; 39: 300–308
  • Beuf O, Jaillon F, Saint-Jalmes H. Small-animal MRI: Signal-to-noise ratio comparison at 7 and 1.5 T with multiple-animal acquisition strategies. MAGMA 2006; 19: 202–208
  • Bock N A, Konyer N B, Henkelman R M. Multiple-mouse MRI. Magnetic Resonance in Medicine 2003; 49: 158–167
  • Booth N H, McDonald L E. Veterinary pharmacology and therapeutics6th ed. Iowa State University Press, AmesUSA 1988
  • Brockmann M A, Kemmling A, Groden C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 2007; 43: 79–87
  • Brockmann M A, Ulmer S, Leppert J, Nadrowitz R, Wuestenberg R, Nolte I, Petersen D, Groden C, Giese A, Gottschalk S. Analysis of mouse brain using a clinical 1.5 T scanner and a standard small loop surface coil. Brain Research 2006; 1068: 138–142
  • Cai Q Y, Kim S H, Choi K S, Kim S Y, Byun S J, Kim K W, Park S H, Juhng S K, Yoon K H. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Investigative Radiology 2007; 42: 797–806
  • Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska E M, Marciniak M, Janiak M K. Single low doses of X rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiation Research 2004; 161: 335–340
  • Chen F, De Keyzer F, Wang H, Vandecaveye V, Landuyt W, Bosmans H, Hermans R, Marchal G, Ni Y. Diffusion weighted imaging in small rodents using clinical MRI scanners. Methods 2007; 43: 12–20
  • Chen Y C, Galpern W R, Brownell A L, Matthews R T, Bogdanov M, Isacson O, Keltner J R, Beal M F, Rosen B R, Jenkins B G. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: Correlation with PET, microdialysis, and behavioral data. Magnetic Resonance in Medicine 1997; 38: 389–398
  • Cherry S R. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons) – advances in PET imaging technology. Journal of Nuclear Medicine 2006; 47: 1735–1745
  • Colby L A, Morenko B J. Clinical considerations in rodent bioimaging. Comparative Medicine 2004; 54: 623–630
  • Day T K, Zeng G, Hooker A M, Bhat M, Scott B R, Turner D R, Sykes P J. Extremely low priming doses of X radiation induce an adaptive response for chromosomal inversions in pKZ1 mouse prostate. Radiation Research 2006; 166: 757–766
  • de Bazelaire C, Siauve N, Fournier L, Frouin F, Robert P, Clement O, de Kerviler E, Cuenod C A. Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats' rhabdomyosarcoma. European Radiology 2005; 15: 2497–2505
  • Diehl K H, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal J M, van de Vorstenbosch C. A good practice guide to the administration of substances and removal of blood, including routes and volumes. Journal of Applied Toxicology 2001; 21: 15–23
  • European Commission. 2007, Commission Staff Working Document – Annex to the 5th Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union. Report nr. SEC/2007/1455, COM/2007/675 final, released: 05.11. 2007, Brussels. Available from the website: http://ec.europa.eu/environment/chemicals/lab_animals/reports_en.htm
  • Fan G, Zang P, Jing F, Wu Z, Guo Q. Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: Correlation with histopathology. Academic Radiology 2005; 12: 640–651
  • Fink C, Kiessling F, Bock M, Lichy M P, Misselwitz B, Peschke P, Fusenig N E, Grobholz R, Delorme S. High-resolution three-dimensional MR angiography of rodent tumors: Morphologic characterization of intratumoral vasculature. Journal of Magnetic Resonance Imaging 2003; 18: 59–65
  • Flecknell P A. Anaesthesia of animals for biomedical research. British Journal of Anaesthesia 1993; 71: 885–894
  • Ford N L, Thornton M M, Holdsworth D W. Fundamental image quality limits for microcomputed tomography in small animals. Medical Physics 2003; 30: 2869–2877
  • Fueger B J, Czernin J, Hildebrandt I, Tran C, Halpern B S, Stout D, Phelps M E, Weber W A. Impact of animal handling on the results of 18F-FDG PET studies in mice. Journal of Nuclear Medicine 2006; 47: 999–1006
  • Fujimori A, Okayasu R, Ishihara H, Yoshida S, Eguchi-Kasai K, Nojima K, Ebisawa S, Takahashi S. Extremely low dose ionizing radiation up-regulates CXC chemokines in normal human fibroblasts. Cancer Research 2005; 65: 10159–10163
  • Gale M E, Robbins A H, Hamburger R J, Widrich W C. Renal toxicity of contrast agents: Iopamidol, iothalamate, and diatrizoate. AJR. American Journal of Roentgenology 1984; 142: 333–335
  • Ginefri J C, Poirier-Quinot M, Girard O, Darrasse L. Technical aspects: Development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T. Methods 2007; 43: 54–67
  • Ginefri J C, Poirier-Quinot M, Robert P, Darrasse L. Contrast-enhanced dynamic MRI protocol with improved spatial and time resolution for in vivo microimaging of the mouse with a 1.5-T body scanner and a superconducting surface coil. Magnetic Resonance Imaging 2005; 23: 239–243
  • Griffin J L, Shockcor J P. Metabolic profiles of cancer cells. Nature Reviews Cancer 2004; 4: 551–561
  • Grippo P J, Sandgren E P. Modeling pancreatic cancer in animals to address specific hypotheses. Methods in Molecular Medicine 2005; 103: 217–243
  • Gueant-Rodriguez R M, Romano A, Barbaud A, Brockow K, Gueant J L. Hypersensitivity reactions to iodinated contrast media. Current Pharmaceutical Design 2006; 12: 3359–3372
  • Hainfeld J F, Slatkin D N, Focella T M, Smilowitz H M. Gold nanoparticles: A new X-ray contrast agent. British Journal of Radiology 2006; 79: 248–253
  • Hall E J, Giaccia A J. Radiobiology for the radiologist6th ed. Lippincott Williams and Wilkins, Philadelphia 2006
  • Hanusch C, Hoeger S, Beck G C. Anaesthesia of small rodents during magnetic resonance imaging. Methods 2007; 43: 68–78
  • Heijstek M W, Kranenburg O, Borel Rinkes I H. Mouse models of colorectal cancer and liver metastases. Digestive Surgery 2005; 22: 16–25
  • Heindl C, Hess A, Brune K. Refinement and reduction in animal experimentation: Options for new imaging techniques. ALTEX 2008; 25: 121–125
  • Herneth A M, Guccione S, Bednarski M. Apparent diffusion coefficient: A quantitative parameter for in vivo tumor characterization. European Journal of Radiology 2003; 45: 208–213
  • Hildebrandt I J, Su H, Weber W A. Anesthesia and other considerations for in vivo imaging of small animals. ILAR Journal 2008; 49: 17–26
  • Imam S K. Molecular nuclear imaging: The radiopharmaceuticals (review). Cancer Biotherapy and Radiopharmaceuticals 2005; 20: 163–172
  • Inderbitzin D, Stoupis C, Sidler D, Gass M, Candinas D. Abdominal magnetic resonance imaging in small rodents using a clinical 1.5 T MR scanner. Methods 2007; 43: 46–53
  • Kiessling F, Heilmann M, Vosseler S, Lichy M, Krix M, Fink C, Kiessling I, Steinbauer H, Schad L, Fusenig N E, Delorme S. Dynamic T1-weighted monitoring of vascularization in human carcinoma heterotransplants by magnetic resonance imaging. International Journal of Cancer 2003; 104: 113–120
  • Kim C F, Jackson E L, Kirsch D G, Grimm J, Shaw A T, Lane K, Kissil J, Olive K P, Sweet-Cordero A, Weissleder R, Jacks T. Mouse models of human non-small-cell lung cancer: Raising the bar. Cold Spring Harbor Symposia on Quantitative Biology 2005; 70: 241–250
  • Kunsch K, Kunsch S. Der Mensch in Zahlen2nd ed. Akademischer Verlag, Heidelberg, Berlin 2000, Spektrum
  • Kwok W E, You Z. In vivo MRI using liquid nitrogen cooled phased array coil at 3.0 T. Magnetic Resonance Imaging 2006; 24: 819–823
  • LaManna J C, Harik S I. Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats. Journal of Cerebral Blood Flow and Metabolism 1986; 6: 717–723
  • Landuyt W, Hermans R, Bosmans H, Sunaert S, Beatse E, Farina D, Meijerink M, Zhang H, Van Den Bogaert W, Lambin P, Marchal G. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T. European Radiology 2001; 11: 2332–2340
  • Lee K H, Ko B H, Paik J Y, Jung K H, Choe Y S, Choi Y, Kim B T. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. Journal of Nuclear Medicine 2005; 46: 1531–1536
  • Linn J, Schwarz F, Schichor C, Wiesmann M. Cranial MRI of small rodents using a clinical MR scanner. Methods 2007; 43: 2–11
  • Lukasik V M, Gillies R J. Animal anaesthesia for in vivo magnetic resonance. NMR in Biomedicine 2003; 16: 459–467
  • Lyons S K. Advances in imaging mouse tumour models in vivo. Journal of Pathology 2005; 205: 194–205
  • Mankoff D A, Bellon J R. Positron-emission tomographic imaging of cancer: Glucose metabolism and beyond. Seminars in Radiation Oncology 2001; 11: 16–27
  • Mercer J R. Molecular imaging agents for clinical positron emission tomography in oncology other than fluorodeoxyglucose (FDG): Applications, limitations and potential. Journal of Pharmacy and Pharmaceutical Sciences 2007; 10: 180–202
  • Montet-Abou K, Daire J L, Ivancevic M K, Hyacinthe J N, Nguyen D, Jorge-Costa M, Morel D R, Vallee J P. Optimization of cardiac cine in the rat on a clinical 1.5-T MR system. MAGMA 2006; 19: 144–151
  • Morton D B, Jennings M, Buckwell A, Ewbank R, Godfrey C, Holgate B, Inglis I, James R, Page C, Sharman I, Verschoyle R, Westall L, Wilson A B. Refining procedures for the administration of substances. Report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. British Veterinary Association Animal Welfare Foundation/Fund for the Replacement of Animals in Medical Experiments/Royal Society for the Prevention of Cruelty to Animals/Universities Federation for Animal Welfare. Laboratory Animals 2001; 35: 1–41
  • Muruganandham M, Lupu M, Dyke J P, Matei C, Linn M, Packman K, Kolinsky K, Higgins B, Koutcher J A. Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO0281501 by dynamic contrast-enhanced MRI at 1.5 T. Molecular Cancer Therapeutics 2006; 5: 1950–1957
  • Oliveira P A, Colaco A, De la Cruz P L, Lopes C. Experimental bladder carcinogenesis-rodent models. Experimental Oncology 2006; 28: 2–11
  • Pandey R, Shankar B S, Sharma D, Sainis K B. Low dose radiation induced immunomodulation: Effect on macrophages and CD8+ T cells. International Journal of Radiation Biology 2005; 81: 801–812
  • Phelps M E. Positron emission tomography provides molecular imaging of biological processes. Proceedings of the National Academy of Sciences of the United States of America 2000; 97: 9226–9233
  • Pichler B J, Wehrl H F, Kolb A, Judenhofer M S. Positron emission tomography/magnetic resonance imaging: The next generation of multimodality imaging. Seminars in Nuclear Medicine 2008; 38: 199–208
  • Popovtzer R, Agrawal A, Kotov N A, Popovtzer A, Balter J, Carey T E, Kopelman R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Letters 2008; 8: 4593–4596
  • Qiu H H, Cofer G P, Hedlund L W, Johnson G A. Automated feedback control of body temperature for small animal studies with MR microscopy. IEEE Transactions on Biomedical Engineering 1997; 44: 1107–1113
  • Robinson M K, Doss M, Shaller C, Narayanan D, Marks J D, Adler L P, Gonzalez Trotter D E, Adams G P. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Research 2005; 65: 1471–1478
  • Rosol T J, Tannehill-Gregg S H, LeRoy B E, Mandl S, Contag C H. Animal models of bone metastasis. Cancer 2003; 97: 748–757
  • Rowland D J, Cherry S R. Small-animal preclinical nuclear medicine instrumentation and methodology. Seminars in Nuclear Medicine 2008; 38: 209–222
  • Schmieder A H, Winter P M, Caruthers S D, Harris T D, Williams T A, Allen J S, Lacy E K, Zhang H, Scott M J, Hu G, Robertson J D, Wickline S A, Lanza G M. Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles. Magnetic Resonance in Medicine 2005; 53: 621–627
  • Seemann M D. Human PET/CT scanners: Feasibility for oncological in vivo imaging in mice. European Journal of Medical Research 2004; 9: 468–472
  • Seemann M D, Beck R, Ziegler S. In vivo tumor imaging in mice using a state-of-the-art clinical PET/CT in comparison with a small animal PET and a small animal CT. Technology in Cancer Research and Treatment 2006; 5: 537–542
  • Szczesny G, Veihelmann A, Massberg S, Nolte D, Messmer K. Long-term anaesthesia using inhalatory isoflurane in different strains of mice-the haemodynamic effects. Laboratory Animals 2004; 38: 64–69
  • Taschereau R, Chatziioannou A F. Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds. Medical Physics 2007; 34: 1026–1036
  • Taschereau R, Chow P L, Chatziioannou A F. Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Medical Physics 2006; 33: 216–224
  • Tatsumi M, Nakamoto Y, Traughber B, Marshall L T, Geschwind J F, Wahl R L. Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]fluoro-2-deoxy-D-glucose. Cancer Research 2003; 63: 6252–6257
  • Thoeny H C, De Keyzer F, Vandecaveye V, Chen F, Sun X, Bosmans H, Hermans R, Verbeken E K, Boesch C, Marchal G, Landuyt W, Ni Y. Effect of vascular targeting agent in rat tumor model: Dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 2005; 237: 492–499
  • Thorsen F, Ersland L, Nordli H, Enger P O, Huszthy P C, Lundervold A, Standnes T, Bjerkvig R, Lund-Johansen M. Imaging of experimental rat gliomas using a clinical MR scanner. Journal of Neuro-Oncology 2003; 63: 225–231
  • Topal A, Gul N, Ilcol Y, Gorgul O S. Hepatic effects of halothane, isoflurane or sevoflurane anaesthesia in dogs. Journal of Veterinary Medicine, Series A: Physiology, Pathology, Clinical Medicine 2003; 50: 530–533
  • Toyama H, Ichise M, Liow J S, Vines D C, Seneca N M, Modell K J, Seidel J, Green M V, Innis R B. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nuclear Medicine and Biology 2004; 31: 251–256
  • Ulmer S, Reeh M, Krause J, Herdegen T, Heldt-Feindt J, Jansen O, Rohr A. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47mm at a clinical 1.5T scanner. Journal of Neuroscience Methods 2008; 172: 168–172
  • United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR). UKCCCR Guidelines for the Welfare of Animals in Experimental Neoplasia. British Journal of Cancer 1998; 77: 1–10, 2nd ed
  • van Furth W R, Laughlin S, Taylor M D, Salhia B, Mainprize T, Henkelman M, Cusimano M D, Ackerley C, Rutka J T. Imaging of murine brain tumors using a 1.5 Tesla clinical MRI system. Canadian Journal of Neurological Sciences 2003; 30: 326–332
  • van Zutphen L FM, Baumans V, Beynen A C. Principles of laboratory animal scienceRev ed. Elsevier, Amsterdam 2001
  • Winter P M, Caruthers S D, Kassner A, Harris T D, Chinen L K, Allen J S, Lacy E K, Zhang H, Robertson J D, Wickline S A, Lanza G M. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel ανβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Research 2003; 63: 5838–5843
  • Wolf G, Grüner S, Schindler S, Koch A, Tokalov S, Laniado M, Baumann M, Abolmaali N. Diffusionsgewichtete und morphologische Ganzkörper-MRT der Ratte bei 1.5 T. RöFo. Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 2007; 179: S272
  • Xu S, Gade T P, Matei C, Zakian K, Alfieri A A, Hu X, Holland E C, Soghomonian S, Tjuvajev J, Ballon D, Koutcher J A. In vivo multiple-mouse imaging at 1.5 T. Magnetic Resonance in Medicine 2003; 49: 551–557
  • Yu H S, Song A Q, Lu Y D, Qiu W S, Shen F Z. Effects of low-dose radiation on tumor growth, erythrocyte immune function and SOD activity in tumor-bearing mice. Chinese Medical Journal 2004; 117: 1036–1039
  • Zhang C, Jugold M, Woenne E C, Lammers T, Morgenstern B, Mueller M M, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Research 2007; 67: 1555–1562

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.