208
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Competition between hydrogen bonding and protein aggregation in neuronal-like cells under exposure to 50 Hz magnetic field

Pages 395-403 | Received 18 Jul 2015, Accepted 24 Mar 2016, Published online: 13 May 2016

References

  • Ambrose EJ, Elliott A. 1951. Infra-red spectroscopic studies of globular protein structure. Proc Roy Soc London A. 208:75.
  • Babenko AP, Samoilov VO, Kazantseva ST, Shevchenko YL. 1992. ATP-sensitive K(+)-channels in the human adult ventricular cardiomyocytes membrane. FEBS Lett. 313:148–150.
  • Bauer R, Carrotta R, Rischel C, Øgendal L. 2000. Characterization and isolation of intermediates in β-lactoglobulin heat aggregation at high pH. Biophys J. 79:1030–1038.
  • Becker L, Bannwarth M, Meisinger C, Hill K, Model K, Krimmer T, Casadio R, Truscott KN, Schulz GE, Pfanner N, et al. 2005. Preprotein translocase of the outer mitochondrial membrane: Reconstituted Tom 40 forms a characteristic TOM pore. J Mol Biol. 353:1011–1020.
  • Besley NA. 2004. Ab initio modeling of amide vibrational bands in solution. J Phys Chem A. 108:10794–10800.
  • Birge R, Fajardo E, Hempstead B. 1998. Signal transduction and neuronal cell death during development and disease. In: Lockshin RA, Zakeri Z, Tilly JL, editors. When cells die: a comprehensive evaluation of apoptosis and programmed cell death. New York: Wiley-Liss. pp. 347–384.
  • Bowley HJ, Collin SMH, Gerrard DL, James DI, Maddams WF, Tooke PB, Wyatt ID. 1985. The Fourier self-deconvolution of Raman spectra. Appl Spectrosc. 39:1004–1009.
  • Calabrò E, Magazù S. 2010. Monitoring electromagnetic field emitted by high frequencies home utilities. J Electromag Analysis Applicat. 2:571–579.
  • Calabrò E, Condello S, Magazù S, Ientile R. 2011. Static and 50 Hz electromagnetic fields effects on human neuronal-like cells vibration bands in the mid-infrared region. J Electromag Analysis Applicat. 3:69–78.
  • Calabrò E, Condello S, Magazù S, Ientile R. 2012. Electromagnetic fields low levels altered the DNA infrared region in RA-differentiated SH-SY5Y neuroblastoma cells. BioTechnol: An Ind J. 6:267–271.
  • Calabrò E, Magazù S. 2012. Electromagnetic fields effects on the secondary structure of lysozyme and bioprotective effectiveness of trehalose. Adv Phys Chem. 2012:970369 (6 pp).
  • Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, Ientile R. 2013a. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics. 34:618–629.
  • Calabrò E, Condello S, Currò M, Ferlazzo N, Vecchio M, Caccamo D, Magazù S, Ientile R. 2013b. 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxidat Med Cellular Longevity 2013:414393 (8 pp).
  • Calabrò E, Magazù S. 2013a. On the hydrogen bond increasing in polyethylene oxide aqueous solution induced by exposure to electromagnetic fields. Phys Chem: An Ind J. 8:59–66.
  • Calabrò E, Magazù S. 2013b. Demicellization of polyethylene oxide in water solution under static magnetic field exposure studied by FTIR spectroscopy. Adv Phys Chem 2013:485865 (8 pp).
  • Calabrò E, Magazù S. 2014. Unfolding-induced in haemoglobin by exposure to electromagnetic fields: A FTIR spectroscopy study. Orient J Chem. 30:31–35.
  • Calabrò E, Magazù S. 2016. Parallel β-sheet Vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves. Bioelectromagnetics. 37:99–107.
  • Chang K-T, Weng C-I. 2006. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J Appl Phys. 100:043917.
  • Clark AH, Tuffnel CD. 1980. Small-angle X ray scattering studies of thermally-induced globular protein gels. Int J Pept Protein Res. 16:339–351.
  • Clark AH, Saunderson DHP, Suggett A. 1981. Infrared and Laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int J Peptide Protein Res. 17:353–364.
  • Dumas P, Miller L. 2003. The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vibrational Spectrosc. 32:3–21.
  • Fitzpatrick AW, Knowles TPJ, Waudby CA, Vendruscolo M, Dobson CM. 2011. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput Biol. 7:e1002169.
  • Goodman R, Blank M, Lin H, Dai R, Khorkova O, Soo L, Weisbrot D, Henderson A. 1994. Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem Bioenerget. 33:115–120.
  • Goormaghtigh E, Cabiaux V, Ruysschaert JM. 1994. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Sub-Cell Biochem. 23:405–450.
  • Hammiche A, German MJ, Hewitt R, Pollock HM, Martin FL. 2005. Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy. Bioph J. 88:3699–3706.
  • Hoang TX, Trovato A, Seno F, Banavar JR, Maritan A. 2004. Geometry and symmetry presculpt the free-energy landscape of proteins. Proc Natl Acad Sci USA. 101:7960–7964.
  • Holman HYN, Goth-Goldstein R, Blakely EA, Bjornstad K, Martin MC, McKinney WR. 2000. Individual human cell responses to low doses of chemicals studied by synchrotron infrared spectromicroscopy. In Biomedical spectroscopy: Vibrational spectroscopy and other novel techniques. January 2000. Proc SPIE. 3918:57–63.
  • Hosoda H, Mori H, Sogoshi N, Nagasawa A, Nakabayashi S. 2004. Refractive indices of water and aqueous electrolyte solutions under high magnetic fields. J Phys Chem A. 108:1461–1464.
  • Hubbard RE. 2001. Hydrogen bonds in proteins: Role and strength. In: Encyclopedia of life sciences. London: Macmillan Publishers Ltd.
  • Inaba H, Saitou T, Tozaki K, Hayashi H. 2004. Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J Appl Phys. 96:6127–6133.
  • International Agency for Research on Cancer (IARC). 2002. Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. Lyon: IARC.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). 1998. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). 2010. ICNIRP Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz–100 kHz). Health Phys. 99:818–836.
  • Jackson M, Mantsch HH. 1991. Protein secondary structure from FT-IR spectroscopy: Correlation with dihedral angles from three-dimensional Ramachandran plot. Can J Chem. 69:1639–1642.
  • Jamin N, Dumas P, Moncuit J, Fridman WH, Teillaud JL, Carr GL, Williams GP. 1998. Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry. Proc Natl Acad Sci USA. 95:4837–4840.
  • Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG. 1981. Fourier self-deconvolution – a method for resolving intrinsically overlapped bands. Appl Spectrosc. 35:271–276.
  • Keasar C, Levitt M. 2003. A novel approach to decoy set generation: Designing a physical energy function having minima with native structure characteristics. J Mol Biol. 329:159–174.
  • Kheterpal I, Zhou S, Cook KD, Wetzel R. 2000. Aβ amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc Natl Acad Sci USA. 97:13597–13601.
  • Kolinski A, Skolnick J. 1992. Discretized model of proteins: I. Monte Carlo study of cooperativity in homopolypeptides. J Chem Phys. 97:9412.
  • Lefevre T, Subirade M. 2000. Molecular differences in the formation and structure of fine-stranded and particulate β-lactglobulin gels. Biopolymers. 54:578–586.
  • Levy-Moonshine A, Amir El-ad D, Keasar C. 2009. Enhancement of beta-sheet assembly by cooperative hydrogen bonds potential. Bioinformatics. 25:2639–2645.
  • Liwo A, Kźmierkiewicz R, Czaplewski C, Groth M, Oldziej S, Wawak RJ, Rackovsky S, Pincus MR, Scheraga HA. 1998. United-residue force field for off-lattice protein-structure simulations. III. Origin of backbone hydrogen-bonding cooperativity in united residue potentials. J Comput Chem. 19:259–276.
  • Magazù S, Calabrò E, Campo S. 2010. FTIR Spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J Phys Chem B. 114:12144–12149.
  • Magazù S, Calabrò E. 2011. Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by FTIR spectroscopy. J Phys Chem B. 115:6818–6826.
  • Magazù S, Calabrò E, Campo S, Interdonato S. 2012. New insights into bioprotective effectiveness of disaccharides: a FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields. J Biol Phys. 38:61–74.
  • Marino AA, Kolomytkin OV, Frilot C. 2003. Extracellular currents alter gap junction intercellular communication in synovial fibroblasts. Bioelectromagnetics. 24:199–205.
  • Mikhonin AV, Ahmed Z, Ianoul A, Asher SA. 2004. Assignments and conformational dependencies of the amide III peptide backbone UV resonance Raman bands. J Phys Chem B. 108:19020–19028.
  • Mikhonin AV, Bykov SV, Myshakina NS, Asher SA. 2006. Peptide secondary structure folding reaction coordinate: correlation between UV Raman amide III frequency, Psi Ramachandran angle, and hydrogen bonding. J Phys Chem B. 110:1928–1943.
  • Milner-White EJ. 1997. The partial charge of the nitrogen atom in peptide bonds. Protein Sci. 6:2477–2482.
  • Mittler R. 1998. Cell death in plants. In: Lockshin RA, Zakeri Z, Tilly JL, editors. When cells die: a comprehensive evaluation of apoptosis and programmed cell death. New York: Wiley-Liss. pp. 147–174.
  • Moosavi F, Gholizadeh M. 2014. Magnetic effects on the solvent properties investigated by molecular dynamics simulation. J Magnet Magnetic Mat. 354:239–247.
  • Parker FS. 1971. Applications of infrared spectroscopy in biochemistry, biology, and medicine. New York: Plenum Press.
  • Pipkin JL, Hinson WG, Young JF, Rowland KL, Shaddock JG, Tolleson WH, Duffy PH, Casciano DA. 1999. Induction of stress proteins by electromagnetic fields in cultured HL-60 cells. Bioelectromagnetics. 20:347–357.
  • Rigas B, Morgello S, Goldman IS, Wong PTT. 1990. Human colorectal cancers display abnormal Fourier-transform infrared spectra. Proc Natl Acad Sci USA. 87:8140–8144.
  • Schell D, Tsai J, Scholtz JM, Pace CN. 2006. Hydrogen bonding increases packing density in the protein interior. Proteins. 63:278–282.
  • Schmidt P, Dybal J, Rodriguez-Cabello JC, Reboto V. 2005. Role of water in structural changes of poly(AVGVP) and poly(GVGVP) studied by FTIR and Raman spectroscopy and ab initio calculations. Biomacromolecules. 6:697–706.
  • Stuart B. 1997. Biological applications of infrared spectroscopy. Analytical chemistry of open learning 115. Chichester (UK): John Wiley & Son.
  • Stuart B. 2004. Infrared spectroscopy: Fundamentals and applications. Chichester, UK: Wiley & Sons.
  • Surewicz WK, Mantsch HH. 1988. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 952:115–130.
  • Szabo I, Zoratti M. 2014. Mitochondrial channels: ion fluxes and more. Physiol Rev. 94:519–608.
  • Thorne A, Litzen U, Johansson S. 1999. Spectrophysics: Principles and applications. Berlin: Springer.
  • Torii H, Tatsumi T, Tasumi MJ. 1998. Effects of hydration on the structure, vibrational wavenumbers, vibrational force field and resonance Raman intensities of N-methylacetamide. J Raman Spectrosc. 29:537–546.
  • Villinger S, Briones R, Giller K, Zachariae U, Lange A, de Groot BL, Griesinger C, Becker S, Zweckstetter M. 2010. Functional dynamics in the voltage-dependent anion channel. Proc Natl Acad Sci USA. 107:22546–22551.
  • World Health Organization (WHO). 1984. Extremely low frequency (ELF) fields. Environmental health criteria 35. Geneva: WHO.
  • World Health Organization (WHO). 1987. Magnetic fields. Environmental health criteria 69. Geneva: WHO.
  • World Health Organization (WHO). 1993. Electromagnetic fields (300 Hz to 300 GHz). Environmental health criteria 137. Geneva: WHO.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.