258
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of cell viability, DNA single-strand breaks, and nitric oxide production in LPS-stimulated macrophage RAW264 exposed to a 50-Hz magnetic field

, , &
Pages 583-589 | Received 26 Nov 2015, Accepted 01 Jun 2016, Published online: 19 Jul 2016

References

  • Adair RK. 2000. Static and low-frequency magnetic field effects: health risks and therapies. Rep Progress Phys. 63:415–454.
  • Altman AS, Randers L, Rao G. 1993. Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations. Biotechnol Progress. 9:671–674.
  • Amaroli A, Chessa MG, Bavestrello G, Bianco B. 2013. Effects of an extremely low-frequency electromagnetic field on stress factors: a study in Dictyostelium discoideum cells. Eur J Protistol. 49:400–405.
  • Benassi B, Filomeni G, Montagna C, Merla C, Lopresto V, Pinto R, Carmela M, Consales C. 2016. Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson’s disease toxin MPP+. Molec Neurobiol. 53:4247–4260.
  • Buldak RJ, Polaniak R, Buldak L, Zwirska-Korczala K, Skonleczna M, Monsiol A, Kukla M, Dulawa-Buldak A, Birkner E. 2012. Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells. Bioelectromagnetics. 33:641–651.
  • Collins AR, Oscoz AA, Brumborg G, Gaivão I, Giovanelli L, Kruszewski M, Smith CC, Štětina R. 2008. The comet assay: topical issues. Mutagenesis. 23:143–151.
  • Denicola A, Souza JM, Radi R, Lissi E. 1996. Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch Biochem Biophys. 328:208–212.
  • Dong M, Wang C, Deen WM, Dedon PC. 2003. Absence of 2′-deoxyoxanosine and presence of abasic sites in DNA exposed to nitric oxide at controlled physiological concentrations. Chem Res Toxicol. 16:1044–1055.
  • El-Bialy NS, Rageh MM. 2013. Extremely low-frequency magnetic field enhances the therapeutic efficacy of low-dose cisplatin in the treatment of Ehrlich carcinoma. BioMed Res Int. 2013:189352-1–7.
  • Feychting M, Ahlbom A. 1993. Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol. 138:467–481.
  • Feychting M, Jonsson F, Pederson NL, Ahlbom A. 2003. Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 14:413–419.
  • Focke F, Schuermann D, Kuster N, Schär P. 2010. DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res/Fund Molec Mechan Mutagen. 683:74–83.
  • Grant DN, Cozad MJ, Grant DA, White RA, Grant SA. 2015. In vitro electromagnetic stimulation to enhance cell proliferation in extracellular matrix constructs with and without metallic nanoparticles. J Biomed Mat Res B: Appl Biomater. 103:1532–1540.
  • Hong M-N, Han N-K, Lee H-C, Ko Y-K, Chi S-G, Lee Y-S, Gimm Y-M, Myung S-H, Lee J-S. 2012. Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells. J Radiat Res. 53:79–86.
  • International Agency for Research on Cancer (IARC). 2002. Working group on the evaluation of carcinogenic risks to humans: IARC monographs on the evaluation of carcinogenic risks to humans. IARC. 80:273–338.
  • International commission on non-ionizing radiation protection (ICNIRP). 2010. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz – 100 kHz). Health Phys. 99:818–836.
  • Ivancsits S, Diem E, Hahn O, Rüdiger HW. 2003. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose dependent way. Int Arch Occupat Environ Health. 76:431–436.
  • Juutilainen JS, Lang S. 1997. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutat Res/Rev Mutat Res. 387:165–171.
  • Katsir G, Parola AH. 1998. Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem Biophys Res Commun. 252:753–756.
  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T. 1998. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Analyt Chem. 70:2446–2453.
  • Lai H, Singh NP. 2004. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 112:687–694.
  • Lange S, Richard D, Viergutz T, Kriehuber R, Weiss DG, Simkó M. 2002. Alterations in the cell cycle and in the protein level of cyclin D1, p21CIP1, and p16INK4a after exposure to 50 Hz MF in human cells. Radiat Environ Biophys. 41:131–137.
  • Linet MS, Hatch EE, Kleinerman RA, Robison LL, Kaune WT, Friedman DR, Severson RK, Haines CM, Hartsock CT, Niwa S, Wacholder S, Tarone RE. 1997. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. New Eng J Med. 337:1–8.
  • Lin H, Opler M, Head M, Blank M, Goodman R. 1997. Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. J Cell Biochem. 66:482–488.
  • Löscher W, Liburdy RP. 1998. Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res/Rev Mutat Res. 410:185–220.
  • Lupke M, Rollwitz J, Simkó M. 2004. Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells. Free Rad Res. 38:985–993.
  • Luukkonen J, Liimatainen A, Hoyto A, Juutilainen J, Naarala J. 2011. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells. PLoS One. 6:e18021–1-6.
  • Malagoli C, Fabbi S, Teggi S, Calzari M, Poli M, Balloti E, Notari B, Bruni M, Palazzi G, Paolucci P, Vinceti M. 2010. Risk of hematological malignancies associated with magnetic fields exposure from power lines: a case-control study in two municipalities of northern Italy. Environ Health. 9:16–24.
  • Mannerling A-C, Simkó M, Mild KH, Mattson M-O. 2010. Effects of 50 Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys. 49:731–741.
  • Mattsson M-O, Simkó M. 2010. Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology. 301:1–12.
  • Merritt R, Purcell C, Stroink G. 1983. Uniform magnetic field produced by three, four, and five square coils. Rev Scientific Instrum. 54:879–882.
  • Mihai CT, Rotinberg P, Brinza F, Vochita G. 2014. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Environ Health Sci Engineer. 12:15–22.
  • Misko TP, Schlling RJ, Salvemini D, Moore WM, Currie MG. 1993. A fluorometric assay for the measurement of nitrite in biological samples. Analyt Biochem. 214:11–16.
  • Morabito C, Guarnieri S, Fanò G, Mariggiò MA. 2010. Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation. Cellular Physiol Biochem. 26:947–958.
  • Nakayama M, Hondou T, Miyata H. 2014. DNA strand breaks in fibroblasts exposed to a 50-Hz magnetic field. Proc 12th Asian Pacific Phys Conf. (APPC12) 1, 012057.
  • Olive PL, Banáth JP, Durand REJ. 1990. Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J Natl Cancer Inst. 82:779–783.
  • Olive PL, Wlodek D, Durand RE, Banáth JP. 1992. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Experim Cell Res. 198:259–267.
  • Patruno A, Amerio P, Pesce M, Vianale G, Di Luzio S, Tulli A, Franceschelli S, Grilli A, Muraro R, Reale M. 2010. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br J Dermatol. 162:258–266.
  • Rodríguez-De la Fuente AO, Alcocer-González JM, Heredia-Rojas JA, Rodríguez-Padilla C, Rodríguez-Flores LE, Santoyo-Stephano MA, Castañieda-Garza E, Taméz-Guerra RS. 2012. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study. Cell Biol Int Rep. 19:e00014-1–5.
  • Simkó M, Kriehuber R. Lange S. 1998. Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat Res/Genet Toxicol Environ Mutagen. 418:101–111.
  • Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Experim Cell Res. 175:184–191.
  • Singh NP, Tice RR, Stephens RE, Schneider EL. 1991. A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat Res/Environ Mutagen Relat Subjects. 252:289–296.
  • Vergallo C, Ahmadi M, Mobasheri H, Dini L. 2014. Impact of inhomogeneous static magnetic field (31.7–232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLoS One. 9:11, e113530.
  • Wardman P. 2007. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Rad Biol Med. 43:995–1022.
  • Wertheimer N, Leeper ED. 1979. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 109:273–284.
  • Wink DA, Mitchell JB. 1998. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Rad Biol Med. 25:434–456.
  • Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascezo M, Grassi C, Azzena GB, Cittadini A. 2005. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta (BBA)-Molec Cell Res. 1743:120–129.
  • Xaus J, Comalada M, Valledor AF, Lloberas J, López-Soliano F, Argíles JM, Bogdan C, Celada A. 2000. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-α. Blood. 95:3823–3831.
  • Xiong X, Sun Y, Sun B, Song W, Sun J, Gao N, Qiao J, Guan X. 2015. Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol. RSC Advances. 5:13357–13365.
  • Yang T, Peleli M, Zollbrecht C, Giulietti A, Terrando N, Lundberg JO, Weitzberg E, Carlström M. 2015. Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated macrophages via a nitric oxide-dependent mechanism. Free Rad Biol Med. 83:159–166.
  • Zingarelli B, O’Conner M, Wong H, Salzman AL, Szabó C. 1996. Peroxynitrite-mediated DNA breakage activates polyadenosine diphosphate ribosyl synthase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol. 156:350–358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.