330
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Focus small to find big – the microbeam story

ORCID Icon &
Pages 782-788 | Received 01 Jun 2017, Accepted 02 Aug 2017, Published online: 29 Aug 2017

References

  • Azzam EI, de Toledo SM, Little JB. 2001. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells. Proc Natl Acad Sci USA. 98:473–478.
  • Bigelow A, Garty G, Funayama T, Randers-Pehrson G, Brenner D, Geard C. 2009. Expanding the question-answering potential of single-cell microbeams at Raraf, USA. J Radiat Res. 50 Suppl A:A21–A28.
  • Bigelow AW, Randers-Pehrson G, Garty G, Geard CR, Xu Y, Harken AD, Johnson GW, Brenner DJ. 2010. Ion, X-Ray, UV and neutron microbeam systems for cell irradiation. AIP Conf Proc. 1336:351–355.
  • Bouchet A, Bidart M, Miladi I, Le Clec’h C, Serduc R, Coutton C, Regnard P, Khalil E, Dufort S, Lemasson B, et al. 2014. Characterization of the 9l Gliosarcoma implanted in the fischer rat: an orthotopic model for a grade iv brain tumor. Tumour Biol. 35:6221–6233.
  • Brenner DJ, Miller RC, Huang Y, Hall EJ. 1995. The biological effectiveness of radon-progeny alpha particles. Iii. Quality factors. Radiat Res. 142:61–69.
  • Buonanno M, Garty G, Grad M, Gendrel M, Hobert O, Brenner DJ. 2013. Microbeam irradiation of C. Elegans nematode in microfluidic channels. Radiat Environ Biophys. 52:531–537.
  • Buonanno M, Randers-Pehrson G, Smilenov LB, Kleiman NJ, Young E, Ponnayia B, Brenner D. 2015. A mouse ear model for bystander studies induced by microbeam irradiation. Radiat Res. 184:219–225.
  • Chen S, Zhao Y, Han W, Zhao G, Zhu L, Wang J, Bao L, Jiang E, Xu A, Hei TK, et al. 2008. Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects. Br J Cancer. 98:1839–1844.
  • Choi VW, Yu KN. 2013. Embryos of the zebrafish Danio Rerio in studies of non-targeted effects of ionizing radiation. Cancer Lett. 356:91–104.
  • Dymnikov AD, Brenner DJ, Johnson G, Randers-Pehrson G. 2000. Theoretical study of short electrostatic lens for the columbia ion microprobe. Rev Sci Instruments. 71:1646–1650.
  • Folkard M, Vojnovic B, Prise KM, Bowey AG, Locke RJ, Schettino G, Michael BD. 1997. A charged-particle microbeam: Ii. A single-particle micro-collimation and detection system. Int J Radiat Biol. 72:387–395.
  • Gerardi S. 2006. A comparative review of charged particle microbeam facilities. Radiat Prot Dosimetry. 122:285–291.
  • Gerardi S, Galeazzi G, Cherubini R. 2005. A microcollimated ion beam facility for investigations of the effects of low-dose radiation. Radiat Res. 164:586–590.
  • Greif K, Beverung W, Langner F, Frankenberg D, Gellhaus A, Banaz-Yaşar F. 2006. The Ptb microbeam: a versatile instrument for radiobiological research. Radiat Prot Dosimetry. 122:313–315.
  • Hei TK, Wu LJ, Liu SX, Vannais D, Waldren CA, Randers-Pehrson G. 1997. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells. Proc Natl Acad Sci USA. 94:3765–3770.
  • Hei TK, Zhou H, Ivanov VN, Hong M, Lieberman HB, Brenner DJ, Amundson SA, Geard CR. 2008. Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol. 60:943–950.
  • Heiss M, Fischer BE, Jakob B, Fournier C, Becker G, Taucher-Scholz G. 2006. Targeted irradiation of mammalian cells using a heavy-ion microprobe. Radiat Res. 165:231–239.
  • Imaseki H, Ishikawa T, Iso H, Konishi T, Suya N, Hamano T, Wang X, Yasuda N, Yukawa M. 2007. Progress report of the single particle irradiation system to cell (Spice). Nuclear Instruments Methods Phys Res Section B. 260:81–84.
  • Kadhim MA, Marsden SJ, Goodhead DT, Malcolmson AM, Folkard M, Prise KM, Michael BD. 2001. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radiat Res. 155 1 Pt 1:122–126.
  • Kobayashi Y, Funayama T, Hamada N, Sakashita T, Konishi T, Imaseki H, Yasuda K, Hatashita M, Takagi K, Hatori S, et al. 2009. Microbeam irradiation facilities for radiobiology in Japan and China. J Radiat Res. 50 Suppl A:A29–A47.
  • Kraske F, Ritter S, Scholz M, Schneider M, Kraft G, Weisbrod U, Kankeleit E. 1990. Directed irradiation of mammalian cells by single charged particles with a given impact parameter. Radiat Protect Dosimetry. 31:315–318.
  • Laissue JA, Blattmann H, Di Michiel M, Slatkin DN, Lyubimova N, Guzman R, Zimmermann W, Birrer S, Bley T, Kircher P, et al. 2001. Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology. Penetrating Radiation Systems and Applications III; Dec. Vol. 4508, p. 65–73.
  • Lawrence TS, Ten Haken RK, Giaccia A. 2008. Principles of radiation oncology. In: DeVita, VT Jr., Lawrence TS, Rosenberg SA, editors. Cancer: principles and practice of oncology. 8th ed. Philadelphia (PA): Lippincott Williams and Wilkins; 307–336.
  • Li F, Liu P, Wang T, Bian P, Wu Y, Wu L, Yu Z. 2010. The induction of bystander mutagenic effects in vivo by alpha-particle irradiation in whole Arabidopsis thaliana plants. Radiat Res. 174:228–237.
  • Marino SA. 2017. 50 Years of the radiological research accelerator facility (Raraf). Radiat Res. 187:413–423.
  • Miller RC, Randers-Pehrson G, Geard CR, Hall EJ, Brenner DJ. 1999. The oncogenic transforming potential of the passage of single alpha particles through mammalian cell nuclei. Proc Natl Acad Sci USA. 96:19–22.
  • Munro TR. 1970. The relative radiosensitivity of the nucleus and cytoplasm of chinese hamster fibroblasts. Radiat Res. 42:451–470.
  • Nagasawa H, Little JB. 1992. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 52:6394–6396.
  • Prise KM, Schettino G. 2014. Microbeam Radiation Biology. In: Brahme A, editor. Comprehensive Biomedical Physics. [place unknown]: Elsevier; p. 23–42.
  • Prise KM, Belyakov OV, Folkard M, Michael BD. 1998. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int J Radiat Biol. 74:793–798.
  • Randers-Pehrson G, Geard CR, Johnson G, Elliston CD, Brenner DJ. 2001. The Columbia University single-ion microbeam. Radiat Res. 156:210–214.
  • Rontgen WC. 1896. On a new kind of rays. Science. 3:227–231.
  • Sawant SG, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ. 2001. The bystander effect in radiation oncogenesis: I. Transformation in C3h 10t1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res. 155:397–401.
  • Sedelnikova OA, Nakamura A, Kovalchuk O, Koturbash I, Mitchell SA, Marino SA, Brenner DJ, Bonner WM. 2007. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 67:4295–4302.
  • Shao C, Folkard M, Michael BD, Prise KM. 2004. Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci USA. 101:13495–13500.
  • Shao C, Folkard M, Prise KM. 2008. Role of Tgf-Beta1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene. 27:434–440.
  • Shao C, Furusawa Y, Aoki M, Matsumoto H, Ando K. 2002. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int J Radiat Biol. 78:837–844.
  • Shao C, Lyng FM, Folkard M, Prise KM. 2006. Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells. Radiat Res. 166:479–487.
  • Slatkin DN, Spanne P, Dilmanian FA, Sandborg M. 1992. Microbeam radiation therapy. Med Phys. 19:1395–1400.
  • Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M, Prise KM. 2007. Cytoplasmic irradiation induces mitochondrial-dependent 53bp1 protein relocalization in irradiated and bystander cells. Cancer Res. 67:5872–5879.
  • Tobias F, Durante M, Taucher-Scholz G, Jakob B. 2010. Spatiotemporal analysis of DNA repair using charged particle radiation. Mutat Res. 704:54–60.
  • Tschachotin S. 1912. Die mikroskopische strahlenstichmethode, eine zelloperationsmethode. Biol. Zentralbl. 32:623.
  • Uretz RB, Perry RP. 1957. Improved ultraviolet microbeam apparatus. Rev Sci Instruments. 28:861–866.
  • Walsh DWM, Siebenwirth C, Greubel C, Ilicic K, Reindl J, Girst S, Muggiolu G, Simon M, Barberet P, Seznec H, Zischka H, et al. 2017. Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential. Sci Rep. 7:46684.
  • Wu J, Zhang B, Wuu YR, Davidson MM, Hei TK. 2017. Targeted cytoplasmic irradiation and autophagy. Mutat Res. [accessed 2017 Mar 1]. pii: S0027-5107(16)30147-6. DOI: 10.1016/j.mrfmmm.2017.02.004.
  • Wu J, Zhang Q, Wuu YR, Zou S, Hei TK. 2017. Cytoplasmic irradiation induces metabolic shift in human small airway epithelial cells via activation of Pim-1 kinase. Radiat Res. 187:451–463.
  • Wu LJ, Randers-Pehrson G, Xu A, Waldren CA, Geard CR, Yu Z, Hei TK. 1999. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA. 96:4959–4964.
  • Zhang B, Davidson MM, Zhou H, Wang C, Walker WF, Hei TK. 2013. Cytoplasmic irradiation results in mitochondrial dysfunction and Drp1-dependent mitochondrial fission. Cancer Res. 73:6700–6710.
  • Zhou H, Randers-Pehrson G, Waldren CA, Vannais D, Hall EJ, Hei TK. 2000. Induction of a bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci. 97:2099–2104.
  • Zirkle RE, Bloom W. 1953. Irradiation of parts of individual cells. Science. 117:487–493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.