575
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Microbeam evolution: from single cell irradiation to pre-clinical studies

, ORCID Icon, ORCID Icon, , , , , & show all
Pages 708-718 | Received 06 Oct 2017, Accepted 22 Dec 2017, Published online: 22 Jan 2018

References

  • Acheva A, Schettino G, Prise KM. 2017. Pro-inflammatory signaling in a 3D organotypic skin model after low LET irradiation-NF-κB, COX-2 activation, and impact on cell differentiation. Front Immunol. 8:82.
  • Alagoz E, Brauer-Krisch E, Bravin A, Cornelius I, Fournier P, Hansen TE, Kok A, Lerch M, Monakhov E, Morse J, et al. 2016. Multi-strip silicon sensors for beam array monitoring in micro-beam radiation therapy. Phys Med. 32:1795–1800.
  • Barberet P, Seznec H. 2015. Advances in microbeam technologies and applications to radiation biology. Radiat Prot Dosimetry. 166:182–187.
  • Bartzsch S, Cummings C, Eismann S, Oelfke U. 2016. A preclinical microbeam facility with a conventional X-ray tube. Med Phys. 43:6301–6308.
  • Bartzsch S, Lott J, Welsch K, Bräuer-Krisch E, Oelfke U. 2015. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy. Med Phys. 42:4069–4079.
  • Bartzsch S, Oelfke U. 2017. Line focus X-ray tubes – a new concept to produce high brilliance X-rays. Phys Med Biol. 62: 8600–8615.
  • Belyakov OV, Folkard M, Mothersill C, Prise KM, Michael BD. 2006. Bystander-induced differentiation: a major response to targeted irradiation of a urothelial explant model. Mutat Res Fundam Mol Mech Mutagen. 597:43–49.
  • Belyakov OV, Malcolmson AM, Folkard M, Prise KM, Michael BD. 2001. Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. Br J Cancer. 84:674–679.
  • Bertucci A, Pocock RDJ, Randers-Pehrson G, Brenner DJ. 2009. Microbeam irradiation of the C. elegans nematode. J Radiat Res. 50:49–54.
  • Blattmann H, Gebbers J-O, Bräuer-Krisch E, Bravin A, Le Duc G, Burkard W, Di Michiel M, Djonov V, Slatkin DN, Stepanek J, et al. 2005. Applications of synchrotron X-rays to radiotherapy. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 548:17–22.
  • Bouchet A, Bidart M, Miladi I, Le Clec’h C, Serduc R, Coutton C, Regnard P, Khalil E, Dufort S, Lemasson B, et al. 2014. Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor. Tumour Biol. 35:6221–6233.
  • Bouchet A, Bräuer-Krisch E, Prezado Y, El Atifi M, Rogalev L, Le Clec’h C, Laissue JA, Pelletier L, Le Duc G. 2016. Better efficacy of synchrotron spatially microfractionated radiation therapy than uniform radiation therapy on glioma. Int J Radiat Oncol Biol Phys. 95:1485–1494.
  • Bouchet A, Lemasson B, Le Duc G, Maisin C, Bräuer-Krisch E, Siegbahn EA, Renaud L, Khalil E, Rémy C, Poillot C, et al. 2010. Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys. 78:1503–1512.
  • Bouchet A, Potez M, Coquery N, Rome C, Lemasson B, Bräuer-Krisch E, Rémy C, Laissue J, Barbier EL, Djonov V, et al. 2017. Permeability of brain tumor vessels induced by uniform or spatially microfractionated synchrotron radiation therapies. Int J Radiat Oncol Biol Phys. 98:1174–1182.
  • Bouchet A, Sakakini N, El Atifi M, Le Clec’h C, Brauer E, Moisan A, Deman P, Rihet P, Le Duc G, Pelletier L. 2013. Early gene expression analysis in 9L orthotopic tumor-bearing rats identifies immune modulation in molecular response to synchrotron microbeam radiation therapy. PLoS One. 8:e81874.
  • Bourret S, Vianna F, Devès G, Atallah V, Moretto P, Seznec H, Barberet P. 2014. Fluorescence time-lapse imaging of single cells targeted with a focused scanning charged-particle microbeam. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 325:27–34.
  • Braby LA. 1991. Microbeam studies of the sensitivity of structures within living cells. Scanning Microsc. 6: 167–174. Discussion 174–175.
  • Bräuer-Krisch E, Adam JF, Alagoz E, Bartzsch S, Crosbie J, DeWagter C, Dipuglia A, Donzelli M, Doran S, Fournier P, et al. 2015. Medical physics aspects of the synchrotron radiation therapies: microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). Phys Med. 31:568–583.
  • Bräuer-Krisch E, Requardt H, Brochard T, Berruyer G, Renier M, Laissue JA, Bravin A. 2009. New technology enables high precision multislit collimators for microbeam radiation therapy. Rev Sci Instrum. 80:074301.
  • Bräuer-Krisch E, Requardt H, Régnard P, Corde S, Siegbahn E, LeDuc G, Brochard T, Blattmann H, Laissue J, Bravin A. 2005. New irradiation geometry for microbeam radiation therapy. Phys Med Biol. 50:3103–3111.
  • Bräuer-Krisch E, Rosenfeld A, Lerch M, Petasecca M, Akselrod M, Sykora J, Bartz J, Ptaszkiewicz M, Olko P, Berg A, et al. 2010. Potential high resolution dosimeters for MRT. AIP Conf Proc 1266:89–97.
  • Bravin A, Olko P, Schültke E, Wilkens JJ. 2015. SYRA3 COST action-microbeam radiation therapy: roots and prospects. Phys Med. 31:561–563.
  • Buonanno M, Randers-Pehrson G, Smilenov LB, Kleiman NJ, Young E, Ponnayia B, Brenner DJ. 2015. A mouse ear model for Bystander studies induced by microbeam irradiation. Radiat Res. 184:219–225.
  • Butz T, Flagmeyer RH, Heitmann J, Jamieson DN, Legge GJF, Lehmann D, Reibetanz U, Reinert T, Saint A, Spemann D, et al. 2000. The Leipzig high-energy ion nanoprobe: a report on first results. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 161:323–327.
  • Clement CH, Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, et al. 2012. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs – threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 41:1–322.
  • Crosbie JC, Anderson RL, Rothkamm K, Restall CM, Cann L, Ruwanpura S, Meachem S, Yagi N, Svalbe I, Lewis RA, et al. 2010. Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues. Int J Radiat Oncol Biol Phys. 77:886–894.
  • Crosbie JC, Fournier P, Bartzsch S, Donzelli M, Cornelius I, Stevenson AW, Requardt H, Bräuer-Krisch E. 2015. Energy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility. J Synchrotron Radiat. 22:1035–1041.
  • Dilmanian FA, Qu Y, Liu S, Cool CD, Gilbert J, Hainfeld JF, Kruse CA, Laterra J, Lenihan D, Nawrocky MM, et al. 2005. X-ray microbeams: tumor therapy and central nervous system research. Nucl Instrum Methods Phys Res A. 548:30–37.
  • Dilmanian FA, Button TM,L, Duc G, Zhong N, Peña LA, Smith JAL, Martinez SR, Bacarian T, Tammam J, Ren B. 2002. Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro Oncol. 4:26.
  • Dilmanian FA, Morris GM, Zhong N, Bacarian T, Hainfeld JF, Kalef-Ezra J, Brewington LJ, Tammam J, Rosen EM. 2003. Murine EMT-6 carcinoma: high therapeutic efficacy of microbeam radiation therapy. Radiat Res. 159:632–641.
  • Dollinger G, Hable V, Hauptner A, Krücken R, Reichart P, Friedl AA, Drexler G, Cremer T, Dietzel S. 2005. Microirradiation of cells with energetic heavy ions. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 231:195–201.
  • Drexler GA, Ruiz-Gómez MJ. 2015. Microirradiation techniques in radiobiological research. J Biosci. 40:629–643.
  • Durante M, Friedl AA. 2011. New challenges in radiobiology research with microbeams. Radiat Environ Biophys. 50:335–338.
  • Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. 2013. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31:108–115.
  • Fernandez-Palomo C, Bräuer-Krisch E, Laissue J, Vukmirovic D, Blattmann H, Seymour C, Schültke E, Mothersill C. 2015a. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo. Phys Med. 31:584–595.
  • Fernandez-Palomo C, Mothersill C, Bräuer-Krisch E, Laissue J, Seymour C, Schültke E. 2015b. γ-H2AX as a marker for dose deposition in the brain of wistar rats after synchrotron microbeam radiation. PLoS One. 10:1–17.
  • Folkard M, Schettino G, Vojnovic B, Gilchrist S, Michette AG, Pfauntsch SJ, Prise KM, Michael BD. 2001. A focused ultrasoft x-ray microbeam for targeting cells individually with submicrometer accuracy. Radiat Res. 156:796–804.
  • Folkard M, Vojnovic B, Hollis KJ, Bowey AG, Watts SJ, Prise KM, Michael BD. 1997. A charged-particle microbeam: II. A single-particle micro-collimation and detection system. Int J Radiat Biol. 72:387–395.
  • Folkard M, Vojnovic B, Schettino G, Forsberg M, Bowey G, Prise KM, Michael BD, Michette AG, Pfauntsch SJ. 1997. Two approaches for irradiating cells individually: a charged-panicle microgram and a soft X-ray microprobe. Nucl Instruments Methods Phys Res B. 130:270–273.
  • Fournier P, Crosbie JC, Cornelius I, Berkvens P, Donzelli M, Clavel AH, Rosenfeld AB, Petasecca M, Lerch MLF, Bräuer-Krisch E. 2016. Absorbed dose-to-water protocol applied to synchrotron-generated X-rays at very high dose rates. Phys Med Biol. 61:N349–N361.
  • Fukamoto K, Shirai K, Sakata T, Sakashita T, Funayama T, Hamada N, Wada S, Kakizaki T, Shimura S, Kobayashi Y, et al. 2007. Development of the irradiation method for the first instar silkworm larvae using locally targeted heavy-ion microbeam. J Radiat Res. 48:247–253.
  • Funayama T, Wada S, Kobayashi Y, Watanabe H. 2005. Irradiation of mammalian cultured cells with a collimated heavy-ion microbeam. Radiat Res. 163:241–246.
  • Gagliardi FM, Cornelius I, Blencowe A, Franich RD, Geso M. 2015. High resolution 3D imaging of synchrotron generated microbeams. Med Phys. 42:6973
  • Ghita M, McMahon SJ, Taggart LE, Butterworth KT, Schettino G, Prise KM. 2017. A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation. Sci Rep. 7:44752.
  • Goodhead DT. 1994. Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol. 65:7–17.
  • Grotzer MA, Schültke E, Bräuer-Krisch E, Laissue JA. 2015. Microbeam radiation therapy: clinical perspectives. Phys Med. 31:564–567.
  • Harken AD, Randers-Pehrson G, Johnson GW, Brenner DJ. 2011. The Columbia University proton-induced soft X-ray microbeam. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 269:1992–1996.
  • Hei TK, Wu LJ, Liu X, Vannais D, Waldren CA, Rander-Pehrsen G. 1997. Mutagenic effects of a single and an exact number of α particles in mammalian cells. Proc Natl Acad Sci USA. 94:3765–3770.
  • Heiss M, Fischer BE, Jakob B, Fournier C, Becker G, Taucher-Scholz G. 2006. Targeted irradiation of Mammalian cells using a heavy-ion microprobe. Radiat Res. 165:231–239.
  • Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K. 2017. Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289.
  • Iwai Y, Ikeda T, Kojima TM, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil GP. 2008. Ion irradiation in liquid of μm3 region for cell surgery. Appl Phys Lett. 92:1–4.
  • Joiner M, van der Kogel A. 2009. Basic clinical Radiobiology. 4th ed. London: Hodder Education, Hachette UK.
  • Kaminaga K, Noguchi M, Narita A, Hattori Y, Usami N, Yokoya A. 2016. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam. Int J Radiat Biol. 92:739–744.
  • Kashino G, Prise KM, Schettino G, Folkard M, Vojnovic B, Michael BD, Suzuki K, Kodama S, Watanabe M. 2004. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells. Mutat Res Fundam Mol Mech Mutagen. 556:209–215.
  • Kassis AI. 2004. The amazing world of Auger electrons. Int J Radiat Biol. 80:789–803.
  • Kassis AI. 2011. Molecular and cellular radiobiological effects of Auger emitting radionuclides. Radiat Prot Dosimetry. 143:241–247.
  • Konishi T, Oikawa M, Suya N, Ishikawa T, Maeda T, Kobayashi A, Shiomi N, Kodama K, Hamano T, Homma-Takeda S, et al. 2013. SPICE-NIRS microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research. J Radiat Res. 54:736–747.
  • Laissue JA, Bartzsch S, Blattmann H, Bräuer-Krisch E, Bravin A, Dalléry D, Djonov V, Hanson AL, Hopewell JW, Kaser-Hotz B, et al. 2013. Response of the rat spinal cord to X-ray microbeams. Radiother Oncol. 106:106–111.
  • Laissue JA, Lyubimova N, Wagner H-P, Archer DW, Slatkin DN,D, Michiel M, Nemoz C, Renier M, Brauer E, Spanne PO, et al. 1999. Microbeam radiation therapy. In: Barber HB, Roehrig H, editors. In: SPIE’s International Symposium on Optical Science, Engineering and Instrumentation. Bellingham: International Society for Optics and Photonics; p. 38–45.
  • Lancaster MA, Knoblich JA. 2014. Organogenesis in a dish: modeling development and disease using organoid technologies. Science (80-). 345:1247125.
  • Langan EA, Philpott MP, Kloepper JE, Paus R. 2015. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol. 24:903–911.
  • Merchant MJ, Jeynes JCG, Grime GW, Palitsin V, Tullis IDW, Barber PR, Vojnovic B, Webb RP, Kirkby KJ. 2012. A focused scanning vertical beam for charged particle irradiation of living cells with single counted particles. Radiat Res. 178:182–190.
  • Merrem A, Bartzsch S, Laissue JA, Oelfke U. 2017. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation. Phys Med Biol. 62:3902–3922.
  • Miller RC, Randers-Pehrson G, Geard CR, Hall EJ, Brenner DJ. 1999. The oncogenic transforming potential of the passage of single particles through mammalian cell nuclei. Proc Natl Acad Sci USA. 96:19–22.
  • Mosconi M, Giesen U, Langner F, Mielke C, Dalla Rosa I, Dirks WG. 2011. 53BP1 and MDC1 foci formation in HT-1080 cells for low- and high-LET microbeam irradiations. Radiat Environ Biophys. 50:345–352.
  • Naipal KAT, Verkaik NS, Sánchez H, van Deurzen CHM, den Bakker MA, Hoeijmakers JHJ, Kanaar R, Vreeswijk MPG, Jager A, van Gent DC. 2016. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 16:78.
  • Okada G, Morrell B, Koughia C, Edgar A, Varoy C, Belev G, Wysokinski T, Chapman D, Kasap S. 2011. Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses. Appl Phys Lett. 99:121105.
  • Paillas S, Ladjohounlou R, Lozza C, Pichard A, Boudousq V, Jarlier M, Sevestre S, Le Blay M, Deshayes E, Sosabowski J, et al. 2016. Localized irradiation of cell membrane by auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects. Antioxid Redox Signal. 25:467–484.
  • Patrono C, Monteiro Gil O, Giesen U, Langner F, Pinto M, Rabus H, Testa A. 2015. “‘BioQuaRT’ project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities”. Radiat Prot Dosimetry. 166:197–199.
  • Peng Y, Zhang M, Zheng L, Liang Q, Li H, Chen J-T, Guo H, Yoshina S, Chen Y-Z, Zhao X, et al. 2017. Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature. 547:458–462.
  • Ponnaiya B, Jenkins-baker G, Brenner DJ, Hall EJ, Randers-pehrson G, Geard CR. 2004. Biological responses in known bystander cells relative to known microbeam-irradiated cells. Radiat Res. 432:426–432.
  • Poole CM, Day LRJ, Rogers PAW, Crosbie JC. 2017. Synchrotron microbeam radiotherapy in a commercially available treatment planning system. Biomed Phys Eng Express. 3:25001.
  • Pouget J-P, Santoro L, Raymond L, Chouin N, Bardiès M, Bascoul-Mollevi C, Huguet H, Azria D, Kotzki P-O, Pèlegrin M, et al. 2008. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res. 170:192–200.
  • Prise KM, Belyakov OV, Folkard MMB. 1998. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int J Radiat Biol. 74:793–798.
  • Prise KM, Schettino G, Vojnovic B, Belyakov O. Europe PMC Funders Group 2010. Microbeam studies of the bystander response. J Radiat Res. 50:A1–A6.
  • Priyadarshika RCU, Crosbie JC, Kumar B, Rogers P. a W. 2011. Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatopathological scoring system. Br J Radiol. 84:833–842.
  • Randers-Pehrson G. 2002. Microbeams, microdosimetry and specific dose. Radiat Prot Dosimetry. 99:471–472.
  • Randers-Pehrson G, Geard CR, Johnson G, Elliston CD, Brenner DJ. 2001. The Columbia University single-ion microbeam. Radiat Res. 214:210–214.
  • Richard DJ, Savage K, Bolderson E, Cubeddu L, So S, Ghita M, Chen DJ, White MF, Richard K, Prise KM, et al. 2011. HSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex. Nucleic Acids Res. 39:1692–1702.
  • Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T. 2011. In vitro production of functional sperm in cultured neonatal mouse testes. Nature. 471:504–507.
  • Sawant SG, Geard CR, Brenner DJ, Hall EJ, Bystander EJT. 2001. The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T ½ cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res. 401:397–401.
  • Schettino G, Folkard M, Prise KM, Vojnovic B, English T, Michette AG, Pfauntsch JS, Forsberg M, Michael BD. 1997. The soft X-ray microprobe: a fine sub-cellular probe for investigating the spatial aspects of the interaction of ionizing radiations with tissue. Spec Publ R Soc Chem. 204:347–352.
  • Schettino G, Folkard M, Vojnovic B, Michette A, Prise KM, Electromagnet A. 2010. X-ray microbeams for radiobiological studies: current status and future challenges. PIERS Online. 2:56–60.
  • Schettino G, Folkard M, Vojnovic B, Michette AG, Stekel D, Pfauntsch SJ, Prise KM, Michael BD. 2000. The ultrasoft X-ray microbeam: a subcellular probe of radiation response. Radiat Res. 153:223–225.
  • Schettino G, Al Rashid S, Prise K. 2010. Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutat Res. 704:68–77.
  • Schültke E, Balosso J, Breslin T. 2017. Microbeam radiation therapy – grid therapy and beyond: a clinical perspective. Br J Radiol. 90:20170073.
  • Serduc R, Bouchet A, Bräuer-Krisch E, Laissue JA, Spiga J, Sarun S, Bravin A, Fonta C, Renaud L, Boutonnat J, et al. 2009. Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose. Phys Med Biol. 54:6711–6724.
  • Serduc R, van de Looij Y, Francony G, Verdonck O, van der Sanden B, Laissue J, Farion R, Bräuer-Krisch E, Siegbahn EA, Bravin A, et al. 2008. Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy. Phys Med Biol. 53:1153–1166.
  • Siragusa M, Baiocco G, Fredericia PM, Friedland W, Groesser T, Ottolenghi A, Jensen M. 2017. The COOLER code: a novel analytical approach to calculate subcellular energy deposition by internal electron emitters. Radiat Res. 188:204–220.
  • Slatkin DN, Spanne P, Dilmanian FA, Gebbers JO, Laissue JA. 1995. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proc Natl Acad Sci USA. 92:8783–8787.
  • Slatkin DN, Spanne F, Dilmanian FA, Sandborg M. 1992. Microbeam radiation therapy. Med Phys. 19:1395–1400.
  • Smyth LML, Senthi S, Crosbie JC, Rogers P. a. 2016. The normal tissue effects of microbeam radiotherapy: what do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol. 3002:1–10.
  • Sowa MB, Murphy MK, Miller JH, McDonald JC, Strom DJ, Kimmel GA. 2005. A variable-energy electron microbeam: a unique modality for targeted low-LET radiation. Radiat Res. 164:695–700.
  • Tartier L, Gilchrist S, Burdak-Rothkamm S, Folkard M, Prise KM. 2007. Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res. 67:5872–5879.
  • Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, et al. 2010. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci USA. 107:8352–8356.
  • Van Der Sanden B, Bräuer-Krisch E, Siegbahn EA, Ricard C, Vial JC, Laissue J. 2010. Tolerance of arteries to microplanar X-ray beams. Int J Radiat Oncol Biol Phys. 77:1545–1552.
  • Variola A, Auguste D, Blin A, Bonis J, Bouaziz S, Bruni C, Cassou K, Chaikovska I, Chancé S, Chaumat V, et al. 2014. The ThomX project status. Proceedings of the 5th International Particle Accelerator Conference, IPAC 2014, Dresden, Germany. WEPRO052, p. 2062–2064.
  • Walsh DWM, Siebenwirth C, Greubel C, Ilicic K, Reindl J, Girst S, Muggiolu G, Simon M, Barberet P, Seznec H, et al. 2017. Live cell imaging of mitochondria following targeted irradiation in situ reveals rapid and highly localized loss of membrane potential. Sci Rep. 7:46684.
  • Wang S, Calderon X, Peng R, Schreiber EC, Zhou O, Chang S. 2011. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application. Appl Phys Lett. 98:1–4.
  • Wang XF, Li JQ, Wang JZ, Zhang JX, Liu A, He ZJ, Zhang W, Zhang B, Shao CL, Shi LQ. 2011. Current progress of the biological single-ion microbeam at FUDAN. Radiat Environ Biophys. 50:353–364.
  • Wu J, Hei TK. 2017. Focus small to find big – the microbeam story. Int J Radiat Biol. https://doi.org/10.1080/09553002.2017.1364801
  • Yang Y, Crosbie JC, Paiva P, Ibahim M, Stevenson A, Rogers P. a W. 2014. In vitro study of genes and molecular pathways differentially regulated by synchrotron microbeam radiotherapy. Radiat Res. 182:626–639.
  • Zeman W, Curtis HJ, Gebhard EL, Haymaker W. 1959. Tolerance of mouse-brain tissue to high-energy deuterons. Science (80-) 130:1760–1761.
  • Zhong N, Morris GM, Bacarian T, Rosen EM, Avraham Dilmanian F. 2003. Response of rat skin to high-dose unidirectional X-ray microbeams: a histological study. Radiat Res. 160:133–142.
  • Zirkle RE, William B. 1953. Irradiation of parts of individual cells. Science. 117:487–493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.