265
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

DNA damage in blood leukocytes from mice irradiated with accelerated carbon ions with an energy of 450 MeV/nucleon

ORCID Icon, , , , , , , & show all
Pages 1245-1253 | Received 11 Jul 2019, Accepted 29 Jul 2020, Published online: 25 Aug 2020

References

  • Antipov YM, Britvich GI, Ivanov SV, Kostin MY, Lebedev OP, Lyudmirskii EA, Maksimov AV, Pikalov VA, Soldatov AP, Khitev GV, et al. 2015. Transversally-flat dose field formation and primary radiobiological exercises with the carbon beam extracted from the U-70 synchrotron. Instrum Exp Tech. 58(4):552–561.
  • Antipova VN, Lomaeva MG, Zyrina NV. 2018. Mitochondrial DNA deletions in tissues of mice after ionizing radiation exposure. Int J Radiat Biol. 94(3):282–288.
  • Asaithamby A, Chen DJ. 2011. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res. 711(1-2):87–99.
  • Azzam EI, Jay-Gerin JP, Pain D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327(1-2):48–60.
  • Bond VP, Fliedner TM, Archambeau JO. 1965. Mammalian radiation lethality. New York, London: Academic Press.
  • Broustas CG, Harken AD, Garty G, Sally A, Amundson SA. 2018. Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation. BMC Genomics. 19(1):504.
  • Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, et al. 2015. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat Res. 183(2):240–248.
  • Chemeris NK, Gapeyev AB, Sirota NP, Gudkova OY, Kornienko NV, Tankanag AV, Konovalov IV, Buzoverya ME, Suvorov VG, Logunov VA. 2004. DNA damage in frog erythrocytes after in vitro exposure to a high peak-power pulsed electromagnetic field. Mutat Res. 558(1-2):27–34.
  • Dobrzyn’ska MM. 2007. Assessment of DNA damage in multiple organs from mice exposed to X-rays or acrylamide or a combination of both using the Comet assay. In Vivo. 21:675–662.
  • Gaziev AI. 2013. Pathways for maintenance of mitochondrial DNA integrity and mitochondrial functions in cells exposed to ionizing radiation. Radiats Biol Radioecol. 53(2):117–136.
  • Gridley DS, Pecaut MJ, Miller GM, Moyers MF, Nelson GA. 2001. Dose and dose-rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines. In Vivo. 15:209–216.
  • Gridley DS, Pecaut MJ, Nelson GA. 2002. Total-body irradiation with high-LET particles: acute and chronic effects on the immune system. Am J Physiol Regul Integr Comp Physiol. 282(3):R677–R688.
  • Gridley DS, Pecaut MJ. 2016. Changes in the distribution and function of leukocytes after whole-body iron ion irradiation. J Radiat Res. 57(5):477–491.
  • Imadome K, Iwakawa M, Nojiri K, Tamaki T, Sakai M, Nakawatari M, Moritake T, Yanagisawa M, Nakamura E, Tsujii H, et al. 2008. Upregulation of stress-response genes with cell cycle arrest induced by carbon ion irradiation in multiple murine tumors models. Cancer Biol Ther. 7(2):208–217.
  • Karger CP, Peschke P. 2017. RBE and related modeling in carbon-ion therapy. Phys Med Biol. 63(1):01TR02.
  • Kobashigawa S, Suzuki K, Yamashita S. 2011. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells. Biochem Biophys Res Commun. 414(4):795–800.
  • Kondratieva I, Samuilov V, editors. 2001. Manual in Immunology. Moscow: MSU; p. 224.
  • Konoplyannikov АG. 1984. Radiobiology of stem cells. Moscow: Energoatomizdat; p. 120.
  • Koppen G, Azqueta A, Pourrut B, Brunborg G, Collins AR, Langie SAS. 2017. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis. 32(3):397–408.
  • Kudryavtsev AA, Kudryavtseva LA, Privolnev TI. 1969. Hematology of animals and fishes. Moscow: Kolos; p. 320.
  • Kuznetsova EA, Zaichkina SI, Sirota NP, Abdullaev SA, Rozanova OM, Aptikaeva GF, Sorokina SS, Romanchenko SP, Smirnova EN. 2014. Induction of DNA damage in blood leucocytes and of cytogenetic injuries in bone marrow polychromatic erythrocytes in mice exposed to low-LET and high-LET radiation and in their progeny. Radiats Biol Radioecol. 54(4):341–349.
  • Liu Y, Zhang H, Zhang L, Xu Z, Xie Y, Zhao W. 2009. Melatonin modulates acute testicular damage induced by carbon ions in mice. Pharmazie. 64(10):685–689.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25(4):402–408.
  • Lorat Y, Timm S, Jakob B, Taucher-Scholz G, Rube CE. 2016. Clustered double-strand breaks in heterochromatin perturb DNA repair after high linear energy transfer irradiation. Radiother Oncol. 121(1):154–161.
  • Lovell DP, Omori T. 2008. Statistical issues in the use of the comet assay. Mutagenesis. 23(3):171–182.
  • Mitsuhashi M, Peel D, Ziogas A, Anton-Culver H. 2009. Enhanced expression of radiation-induced leukocyte CDKN1A mRNA in multiple primary breast cancer patients: potential new marker of cancer susceptibility. Biomark Insights. 4:201–209.
  • Mohamad O, Sishc BJ, Saha J, Pompos A, Rahimi A, Story MD, Davis AJ, Kim DWN. 2017. Carbon ion radiotherapy: a review of clinical experiences and preclinical research, with an emphasis on DNA damage/repair. Cancers. 9(12):66.
  • Møller P. 2018. The comet assay: ready for 30 more years. Mutagenesis. 33(1):1–7.
  • Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H. 2017. Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity. 3:14.
  • Rezaeejam H, Shirazi A, Valizadeh M, Izadi P. 2015. Candidate gene biodosimeters of mice and human exposure to ionizing radiation by quantitative reverse transcription polymerase chain reaction. J Cancer Res Ther. 11(3):549–557.
  • Singh NP, Stephens RE. 1997. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res. 383(2):167–175.
  • Singh NP. 2000. Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis. Mutat Res. 455(1-2):111–127.
  • Sirota N, Kuznetsova E, Mitroshina I. 2018. The level of DNA damage in mouse hematopoietic cells and in frog and human blood cells, as induced by the action of reactive oxygen species in vitro. Radiat Environ Biophys. 57(2):115–121.
  • Sorokina S, Zaichkina S, Rozanova O, Shemyakov A, Smirnova H, Romanchenko S, Dyukina A, Vakhrusheva O, Pikalov V. 2017. The study of biological effects induced by accelerated 12С ions with an energy of 450 mev/n on mice in vivo. Vol. 2. In: Goran G, Trenčić S, Gligorijević M, editors. RAD Conference 2017. Proceedings of the 5th International Conference on Radiation. p. 15–18.
  • Timm S, Lorat Y, Jakob B, Taucher-Scholz G, Rube CE. 2018. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture. Radiother Oncol. 129(3):600–610.
  • Toprani SM, Das B. 2015. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation. Mutagenesis. 30 (5):663–676.
  • Vorob’ev AI, editor. 2002. Manual of hematology. Vol. 1. Moscow: Newdiamed. 280. p. Russian.
  • Whitaker AM, Freudenthal BD. 2018. APE1: A skilled nucleic acid surgeon. DNA Repair (Amst). 71:93–100.
  • Wilson DII, Barsky D. 2001. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res. 485(4):283–307.
  • Wu J, Zhang B, Wuu YR, Davidson MM, Hei TK. 2017. Targeted cytoplasmic irradiation and autophagy. Mutat Res. 806:88–97.
  • Zaichkina SI, Rozanova OM, Smirnova HN, Dyukina AR, Belyakova TA, Strelnikova NS, Sorokina SS, Pikalov VA. 2019. Evaluation of biological efficacy of accelerated carbon ions with an energy of 450 MeV/n on the U-70 accelerator using the mouse survival criteria. Biophysics. 64(6):991–1000.
  • Zhao J, Guo Z, Zhang H, Wang Z, Song L, Ma J, Pei S, Wang C. 2013. The potential value of the neutral comet assay and γH2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines. Radiol Oncol. 47(3):247–257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.