1,032
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Advancements in the use of Auger electrons in science and medicine during the period 2015–2019

ORCID Icon
Pages 2-27 | Received 17 Jun 2020, Accepted 28 Sep 2020, Published online: 23 Oct 2020

References

  • Adelstein SJ. 1992. Biophysical apsects of Auger processes: a review of the literature 1987-1991. In: Howell RW, Narra VR, Sastry KSR, editors. Biophysical aspects of Auger processes. Woodbury, NY: American Institute of Physics.
  • Aghevlian S, Boyle AJ, Reilly RM. 2017. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv Drug Deliv Rev. 109:102–118.
  • Akudugu JM, Azzam EI, Howell RW. 2012. Induction of lethal bystander effects in human breast cancer cell cultures by DNA-Incorporated Iodine-125 depends on phenotype. Int J Radiat Biol. 88(12):1028–1038.
  • Akudugu JM, Howell RW. 2012a. Flow cytometry-assisted Monte Carlo simulation predicts clonogenic survival of cell populations with lognormal distributions of radiopharmaceuticals and anticancer drugs. Int J Radiat Biol. 88(3):286–293.
  • Akudugu JM, Howell RW. 2012b. A method to predict response of cell populations to cocktails of chemotherapeutics and radiopharmaceuticals: validation with daunomycin, doxorubicin, and the alpha particle emitter (210)Po. Nucl Med Biol. 39(7):954–961.
  • Akudugu JM, Neti PVSV, Howell RW. 2011. Changes in lognormal shape parameter guide design of patient-specific radiochemotherapy cocktails. J Nucl Med. 52(4):642–649.
  • Allum F, Burt M, Amini K, Boll R, Köckert H, Olshin PK, Bari S, Bomme C, Brauße F, Cunha de Miranda B, et al. 2018. Coulomb explosion imaging of CH3I and CH2ClI photodissociation dynamics. J Chem Phys. 149(20):204313.
  • Alotiby M, Greguric I, Kibedi T, Lee BQ, Roberts M, Stuchbery AE, Tee P, Tornyi T, Vos M. 2018. Measurement of the intensity ratio of Auger and conversion electrons for the electron capture decay of 125I. Phys Med Biol. 63(6):06NT04.
  • Antosh MP, Wijesinghe DD, Shrestha S, Lanou R, Huang YH, Hasselbacher T, Fox D, Neretti N, Sun S, Katenka N, et al. 2015. Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc Natl Acad Sci USA. 112(17):5372–5376.
  • Auger P. 1923. Sur les rayons β secondaires produits dans un gaz par des rayons X. Comptes Rendus de L'Académie Des Sciences. 177:169–171.
  • Azure MT, Sastry KSR, Archer RD, Howell RW, Rao DV, et al. 1992. Microscale synthesis of carboplatin labeled with the Auger emitter Pt-193m: Radiotoxicity versus chemotoxicity of the antitumor drug in mammalian cells. In: Howell RW, Narra VR, Sastry KSR., editors. Biophysical aspects of Auger processes. Woodbury, NY: American Institute of Physics.
  • Balagurumoorthy P, Xu X, Wang K, Adelstein SJ, Kassis AI. 2012. Effect of distance between decaying 125I and DNA on Auger-electron induced double-strand break yield. Int J Radiat Biol. 88(12):998–1008.
  • Barth S, Joshi S, Marburger S, Ulrich V, Lindblad A, Ohrwall G, Bjorneholm O, Hergenhahn U. 2005. Observation of resonant interatomic Coulombic decay in Ne clusters. J Chem Phys. 122(24):241102.
  • Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. 2018. Subcellular targeting of theranostic radionuclides. Front Pharmacol. 9:996.
  • Baverstock KF, Charton DE, editors. 1988. DNA damage by Auger Emitters. London: Taylor & Francis.
  • Bayart E, Pouzoulet F, Calmels L, Dadoun J, Allot F, Plagnard J, Ravanat JL, Bridier A, Denoziere M, Bourhis J, et al. 2017. Enhancement of IUdR radiosensitization by low-energy photons results from increased and persistent DNA damage. PLoS One. 12(1):e0168395.
  • Behr TM, Behe M, Lohr M, Sgouros G, Angerstein C, Wehrmann E, Nebendahl K, Becker W. 2000. Therapeutic advantages of Auger electron- over beta-emitting radiometals or radioiodine when conjugated to internalizing antibodies. Eur J Nuclear Med. 27(7):753–765.
  • Bennett K, Kowalewski M, Mukamel S. 2015. Probing electronic and vibrational dynamics in molecules by time-resolved photoelectron, Auger-electron, and X-ray photon scattering spectroscopy. Faraday Discuss. 177:405–428.
  • Bentzen SM, Dorr W, Gahbauer R, Howell RW, Joiner MC, Jones B, Jones DT, van der Kogel AJ, Wambersie A, Whitmore G. 2012. Bioeffect modeling and equieffective dose concepts in radiation oncology-terminology, quantities and units. Radiother Oncol. 105(2):266–268.
  • Bergstrom D, Leyton JV, Zereshkian A, Chan C, Cai Z, Reilly RM. 2016. Paradoxical effects of Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45+ cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice. Nucl Med Biol. 43(10):635–641.
  • Bishayee A, Rao DV, Bouchet LG, Bolch WE, Howell RW. 2000. Radioprotection by DMSO against cell death caused by intracellularly localized iodine-125, iodine-131 and polonium-210. Radiat Res. 153(4):416–427.
  • Bizau JM, Cubaynes D, Guilbaud S, Penent F, Lablanquie P, Andric L, Palaudoux J, Al Shorman MM, Blancard C. 2016. Photoelectron Spectroscopy of Ions: study of the Auger decay of the 4d–>nf (n = 4,5) resonances in Xe5+ Ion. Physical Rev Lett. 116(10):103001.
  • Blyth BJ, Sykes PJ. 2011. Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res. 176(2):139–157.
  • Bolognesi P, Carravetta V, Sementa L, Barcaro G, Monti S, Manjari Mishra P, Cartoni A, Castrovilli MC, Chiarinelli J, Tosic S, et al. 2019. Core shell investigation of 2-nitroimidazole. Front Chem. 7:151.
  • Boros E, Holland JP. 2018. Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J Label Comp Radiopharm. 61(9):652–671.
  • Boros E, Packard AB. 2019. Radioactive transition metals for imaging and therapy. Chem Rev. 119(2):870–901.
  • Boudjemia N, Jankala K, Gejo T, Nagaya K, Tamasaku K, Huttula M, Piancastelli MN, Simon M, Oura M. 2019. Deep core photoionization of iodine in CH3I and CF3I molecules: how deep down does the chemical shift reach? Phys Chem Chem Phys. 21(10):5448–5454.
  • Boudousq V, Ricaud S, Garambois V, Bascoul-Mollevi C, Boutaleb S, Busson M, Quenet F, Colombo PE, Bardies M, Kotzki PO, et al. 2010. Brief intraperitoneal radioimmunotherapy of small peritoneal carcinomatosis using high activities of noninternalizing 125I-labeled monoclonal antibodies. J Nucl Med. 51(11):1748–1755.
  • Bourque JL, Biesinger MC, Baines KM. 2016. Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. 45(18):7678–7696.
  • Bradley EW, Chan PC, Adelstein SJ. 1975. The radiotoxicity of iodine-125 in mammalian cells. I. Effects on the survival curve of radioiodine incorporated into DNA. Radiat Res. 64(3):555–563.
  • Brady D, O'Sullivan JM, Prise KM. 2013. What is the role of the bystander response in radionuclide therapies? Front Oncol. 3:215.
  • Cai Z, Chattopadhyay N, Yang K, Kwon YL, Yook S, Pignol JP, Reilly RM. 2016. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl Med Biol. 43(12):818–826.
  • Cai Z, Kwon YL, Reilly RM. 2017. Monte Carlo N-Particle (MCNP) modeling of the cellular dosimetry of 64Cu: comparison with MIRDcell S values and implications for studies of its cytotoxic effects. J Nucl Med. 58(2):339–345.
  • Cai H, Singh AN, Sun X, Peng F. 2015. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging. J Fluoresc. 25(1):113–117.
  • Carter LM, Crawford TM, Sato T, Furuta T, Choi C, Kim CH, Brown JL, Bolch WE, Zanzonico PB, Lewis JS. 2019. PARaDIM: A PHITS-based Monte Carlo tool for internal dosimetry with tetrahedral mesh computational phantoms. J Nucl Med. 60(12):1802–1811.
  • Cederbaum LS, Zobeley J, Tarantelli F. 1997. Giant intermolecular decay and fragmentation of clusters. Phys Rev Lett. 79(24):4778–4781.
  • Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindie E. 2016. Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. 6(10):1611–1618.
  • Chan L, He L, Zhou B, Guan S, Bo M, Yang Y, Liu Y, Liu X, Zhang Y, Xie Q, et al. 2017. Cancer-targeted selenium nanoparticles sensitize cancer cells to continuous γ radiation to achieve synergetic chemo-radiotherapy. Chemistry. 12(23):3053–3060.
  • Charlton DE, Booz J. 1981. A Monte Carlo treatment of the decay of I-125. Radiat Res. 87(1):10–23.
  • Chirayath VA, Callewaert V, Fairchild AJ, Chrysler MD, Gladen RW, McDonald AD, Imam SK, Shastry K, Koymen AR, Saniz R, et al. 2017. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation. Nat Commun. 8(1):16116.
  • Cho J, Gonzalez-Lepera C, Manohar N, Kerr M, Krishnan S, Cho SH. 2016. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement. Phys Med Biol. 61(6):2562–2581.
  • Chudzicki M, Werner WS, Shard AG, Wang YC, Castner DG, Powell CJ. 2015. Evaluating the internal structure of core-shell nanoparticles using X-ray photoelectron intensities and simulated spectra. J Phys Chem C Nanomater Interf. 119(31):17687–17696.
  • Corde S, Joubert A, Adam JF, Charvet AM, Le Bas JF, Esteve F, Elleaume H, Balosso J. 2004. Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds. Br J Cancer. 91(3):544–551.
  • Dahmen V, Pomplun E, Kriehuber R. 2016. Iodine-125-labeled DNA-triplex-forming oligonucleotides reveal increased cyto- and genotoxic effectiveness compared to phosphorus-32. Int J Radiat Biol. 92(11):679–685.
  • Dahmen V, Schmitz S, Kriehuber R. 2017. Induction of the chromosomal translocation t(14;18) by targeting the BCL-2 locus with specific binding I-125-labeled triplex-forming oligonucleotides. Mutat Res. 823:58–64.
  • DeJesus OT. 2017. Chemical consequences of radioactive decay and their biological implications. Curr Radiopharm. 10(3):155–165.
  • Delorme R, Taupin F, Flaender M, Ravanat JL, Champion C, Agelou M, Elleaume H. 2017. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med Phys. 44(11):5949–5960.
  • Di Maria S, Belchior A, Romanets Y, Paulo A, Vaz P. 2018. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies. Appl Radiat Isot. 135:72–77.
  • Dong S, Pal S, Lian J, Chan Y, Prezhdo OV, Loh ZH. 2016. Sub-picosecond Auger-mediated hole-trapping dynamics in colloidal CdSe/CdS core/shell nanoplatelets. ACS Nano. 10(10):9370–9378.
  • Duchemin C, Guertin A, Haddad F, Michel N, Metivier V. 2016. Deuteron induced Tb-155 production, a theranostic isotope for SPECT imaging and auger therapy. Appl Radiat Isot. 118:281–289.
  • Eckerman KF, Endo A. 2008. MIRD: radionuclide data and decay schemes. 2nd ed. Reston, VA: Society of Nuclear Medicine.
  • Ertl HH, Feinendegen LE, Heiniger HJ. 1970. Iodine-125, a tracer in cell biology: physical properties and biological aspects. Phys Med Biol. 15(3):447–456.
  • Fairchild RG, Bond VP. 1984. Photon activation therapy. Strahlentherapie. 160(12):758–763.
  • Falzone N, Lee BQ, Able S, Malcolm J, Terry S, Alayed Y, Vallis KA. 2019. Targeting micrometastases: the effect of heterogeneous radionuclide distribution on tumor control probability. J Nucl Med. 60(2):250–258.
  • Falzone N, Lee BQ, Fernandez-Varea JM, Kartsonaki C, Stuchbery AE, Kibedi T, Vallis KA. 2017. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values. Phys Med Biol. 62(6):2239–2253.
  • Fasshauer E, Kolorenc P, Pernpointner M. 2015. Relativistic decay widths of autoionization processes: the relativistic FanoADC-Stieltjes method. J Chem Phys. 142(14):144106
  • Feifel R, Eland JH, Squibb RJ, Mucke M, Zagorodskikh S, Linusson P, Tarantelli F, Kolorenc P, Averbukh V. 2016. Ultrafast molecular three-electron Auger decay. Phys Rev Lett. 116(7):073001
  • Feinendegen LE. 1975. Biological damage from the Auger effect, possible benefits. Radiat Environ Biophys. 12(2):85–99.
  • Ferreira N, Sigaud L, Montenegro EC. 2017. Three-body fragmentation from single ionization of water by electron impact: the role of satellite states. J Phys Chem A. 121(17):3234–3238.
  • Fonslet J, Lee BQ, Tran TA, Siragusa M, Jensen M, Kibedi T, Stuchbery AE, Severin GW. 2017. 135La as an Auger-electron emitter for targeted internal radiotherapy. Phys Med Biol. 63(1):015026.
  • Fourie H, Newman RT, Slabbert JP. 2015. Microdosimetry of the Auger electron emitting 123I radionuclide using Geant4-DNA simulations. Phys Med Biol. 60(8):3333–3346.
  • Frolova LV, Magedov IV, Harper A, Jha SK, Ovezmyradov M, Chandler G, Garcia J, Bethke D, Shaner EA, Vasiliev I, et al. 2015. Tetracyanoethylene oxide- functionalized graphene and graphite characterized by Raman and Auger spectroscopy. Carbon. 81:216–222.
  • Fukunaga H, Kaminaga K, Sato T, Usami N, Watanabe R, Butterworth KT, Ogawa T, Yokoya A, Prise KM. 2018. Application of an ex vivo tissue model to investigate radiobiological effects on spermatogenesis. Radiat Res. 189(6):661–667.
  • Fukuzawa H, Takanashi T, Kukk E, Motomura K, Wada SI, Nagaya K, Ito Y, Nishiyama T, Nicolas C, Kumagai Y, et al. 2019. Real-time observation of X-ray-induced intramolecular and interatomic electronic decay in CH2I2. Nat Commun. 10(1):2186.
  • Gao C, Leyton JV, Schimmer AD, Minden M, Reilly RM. 2016. Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123+/CD131− phenotype of leukemia stem cells. Appl Radiat Isot. 110:1–7.
  • Gessner O, Guhr M. 2016. Monitoring ultrafast chemical dynamics by time-domain X-ray photo- and Auger-electron spectroscopy. Accounts of Chemical Research. 49(1):138–145.
  • Ghirmai S, Mume E, Tolmachev V, Sjoberg S. 2005. Synthesis and radioiodination of some daunorubicin and doxorubicin derivatives. Carbohydr Res. 340(1):15–24.
  • Ghosh A, Pal S, Vaval N. 2015. Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method. J Chem Phys. 143(2):024305
  • Gierz I, Calegari F, Aeschlimann S, Chavez Cervantes M, Cacho C, Chapman RT, Springate E, Link S, Starke U, Ast CR, et al. 2015. Tracking Primary thermalization events in graphene with photoemission at extreme time scales. Phys Rev Lett. 115(8):086803.
  • Gill MR, Falzone N, Du Y, Vallis KA. 2017. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 18(7):e414–e423.
  • Gill MR, Menon JU, Jarman PJ, Owen J, Skaripa-Koukelli I, Able S, Thomas JA, Carlisle R, Vallis KA. 2018. 111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells. Nanoscale. 10(22):10596–10608.
  • Gill MR, Vallis KA. 2019. Transition metal compounds as cancer radiosensitizers. Chem Soc Rev. 48(2):540–557.
  • Giovanni D, Yu G, Xing G, Leek ML, Sum TC. 2015. Measurement of sub-10 fs Auger processes in monolayer graphene. Optics Express. 23(16):21107–21117.
  • Giussani A. 2015. Models and phantoms for internal dose assessment. Radiat Prot Dosimetry. 164(1-2):46–50.
  • Goddu SM, Howell RW, Bouchet LG, Bolch WE, Rao DV. 1997. MIRD cellular S values: self-absorbed dose per unit cumulated activity for selected radionuclides and monoenergetic electron and alpha particle emitters incorporated into different cell compartments. Reston, VA: Society of Nuclear Medicine.
  • Goddu SM, Howell RW, Rao DV. 1994. Cellular dosimetry: absorbed fractions for monoenergetic electron and alpha particle sources and S-values for radionuclides uniformly distributed in different cell compartments. J Nucl Med. 35(2):303–316.
  • Goddu SM, Narra VR, Harapanhalli RS, Howell RW, Rao DV. 1996. Radioprotection by DMSO against the biological effects of incorporated radionuclides in vivo-Comparison with other radioprotectors and evidence for indirect action of Auger electrons. Acta Oncologica. 35(7):901–907.
  • Goldsztejn G, Marchenko T, Ceolin D, Journel L, Guillemin R, Rueff JP, Kushawaha RK, Puttner R, Piancastelli MN, Simon M. 2016a. Electronic state-lifetime interference in resonant Auger spectra: a tool to disentangle overlapping core-excited states. Phys Chem Chem Phys. 18(22):15133–15142.
  • Goldsztejn G, Marchenko T, Puttner R, Journel L, Guillemin R, Carniato S, Selles P, Travnikova O, Ceolin D, Lago AF, et al. 2016b. Double-Core-Hole states in Neon: lifetime, post-collision interaction, and spectral assignment. Phys Rev Lett. 117(13):133001.
  • Gorobtsov OY, Lorenz U, Kabachnik NM, Vartanyants IA. 2015. Theoretical study of electronic damage in single-particle imaging experiments at x-ray free-electron lasers for pulse durations from 0.1 to 10 fs. Phys Rev E. 91(6):062712.
  • Grokhovsky SL. 2018. Use of β radiation to localize the binding sites of mercury ions and platinum-containing ligand in DNA. Molekuliarnaia Biologiia. 52(5):846–863.
  • Grudzinski J, Marsh I, Titz B, Jeffery J, Longino M, Kozak K, Lange K, Larrabee J, Weichmann A, Moser A, et al. 2018. CLR 125 Auger electrons for the targeted radiotherapy of triple-negative breast cancer. Cancer Biother Radiopharm. 33(3):87–95.
  • Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. 2015. Targeted radionuclide therapy of human tumors. IJMS. 17(1):33.
  • Guerra Liberal FDC, Tavares AAS, Tavares J. 2016. Palliative treatment of metastatic bone pain with radiopharmaceuticals: a perspective beyond Strontium-89 and Samarium-153. Appl Radiat Isot. 110:87–99.
  • Guerreiro JF, Alves V, Abrunhosa AJ, Paulo A, Gil OM, Mendes F. 2018. Radiobiological characterization of 64CuCl2 as a simple tool for prostate cancer theranostics. Molecules. 23(11):2944.
  • Haefliger P, Agorastos N, Renard A, Giambonini-Brugnoli G, Marty C, Alberto R. 2005. Cell uptake and radiotoxicity studies of an nuclear localization signal peptide-intercalator conjugate labeled with [99mTc(CO)3]+. Bioconjug Chem. 16(3):582–587.
  • Hafliger P, Agorastos N, Spingler B, Georgiev O, Viola G, Alberto R. 2005. Induction of DNA-double-strand breaks by auger electrons from 99mTc complexes with DNA-binding ligands. Chembiochem. 6(2):414–421.
  • Haller S, Pellegrini G, Vermeulen C, van der Meulen NP, Koster U, Bernhardt P, Schibli R, Müller C. 2016. Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of 161Tb-folate and 177Lu-folate. EJNMMI Res. 6(1):13.
  • Hans A, Ozga C, Seidel R, Schmidt P, Ueltzhöffer T, Holzapfel X, Wenzel P, Reiß P, Pohl MN, Unger I, et al. 2017. Optical fluorescence detected from X-ray irradiated liquid water. J Phys Chem B. 121(10):2326–2330.
  • Harapanhalli RS, Narra VR, Yaghmai V, Azure MT, Goddu SM, Howell RW, Rao DV. 1994. Vitamins as radioprotectors in vivo. II. Protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides. Radiat Res. 139(1):115–122.
  • He SJ, Wang DK, Jiang N, Tse JS, Lu ZH. 2016. Tunable excitonic processes at organic heterojunctions. Adv Mater. 28(4):649–654.
  • Herve Du Penhoat MA, Ghose KK, Gaigeot MP, Vuilleumier R, Fujii K, Yokoya A, Politis MF. 2015. Investigation of the fragmentation of core-ionised deoxyribose: a study as a function of the tautomeric form. Phys Chem Chem Phys. 17(48):32375–32383.
  • Heuskin AC, Gallez B, Feron O, Martinive P, Michiels C, Lucas S. 2017. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: are there significant physical effects to enhance the dose delivery? Med Phys. 44(8):4299–4312.
  • Hindie E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. 2016. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 57(5):759–764.
  • Hofer KG. 1992. Closing address: biophysical aspects of Auger processes. In: Howell RW, Narra VR, Sastry KSR., editors. Biophysical aspects of Auger processes. Woodbury, NY: American Institute of Physics.
  • Hofer KG. 1996. Biophysical aspects of Auger processes-a review. Acta Oncologica. 35(7):789–796.
  • Hofer KG. 2000. Biophysical aspects of Auger processes. Acta Oncologica. 39(6):651–657.
  • Hofer KG, Hughes WL. 1971. Radiotoxicity of intranuclear tritium, iodine-125 and iodine-131. Radiat Res. 47(1):94–109.
  • Hou DY, Hoch H, Johnston GS, Tsou KC, Jones AE, Farkas RJ, Miller EE, Larson SM. 1985. A new 111In-bleomycin complex for combined radiotherapy and chemotherapy. J Surg Oncol. 29(2):91–98.
  • Howell RW, Narra VR, Sastry KSR, Rao DV, editors. 1992. Biophysical aspects of Auger Processes. New York: American Institute of Physics.
  • Howell RW. 1992. Radiation spectra for Auger-electron emitting radionuclides: report No. 2 of AAPM nuclear medicine task group No. 6. Med Phys. 19(6):1371–1383.
  • Howell RW. 2008. Auger processes in the 21st century. Int J Radiat Biol. 84(12):959–975.
  • Howell RW, Bishayee A. 2002. Bystander effects caused by nonuniform distributions of DNA-incorporated 125I. Micron. 33(2):127–132.
  • Howell RW, Kassis AI, Adelstein SJ, Rao DV, Wright HA, Hamm RN, Turner JE, Sastry KSR. 1994. Radiotoxicity of 195mPt labeled trans-platinum(II) in mammalian cells. Radiat Res. 140(1):55–62.
  • Howell RW, Narra VR, Rao DV, Sastry KSR. 1990. Radiobiological effects of intracellular polonium-210 alpha emissions: a comparison with Auger-emitters. Radiat Prot Dosim. 31(1-4):325–328.
  • Howell RW, Rao DV. 2002. Memoriam: Prof. Kandula S.R. Sastry 1935–2001. J Nucl Med. 43(1):12N.
  • Howell RW, Rao DV, Hou D-Y, Narra VR, Sastry KSR. 1991. The question of relative biological effectiveness and quality factor for Auger emitters incorporated into proliferating mammalian cells. Radiat Res. 128(3):282–292.
  • Howell RW, Rao DV, Sastry KSR. 1989. Macroscopic dosimetry for radioimmunotherapy: nonuniform activity distributions in solid tumors. Med Phys. 16(1):66–74.
  • Howell RW, Sastry KSR, Hill HZ, Rao DV. 1986. Cis-platinum-193m: Its microdosimetry and potential for chemo-Auger combination therapy of cancer. In: Schlafke-Stelson AT, Watson EE, editors. Proceedings of Fourth International Radiopharmaceutical Dosimetry Symposium. Springfield, VA: National Technical Information Service; p. 493–513.
  • Hult Roos A, Eland JHD, Andersson J, Wallner M, Squibb RJ, Feifel R. 2019. Relative extent of triple Auger decay in CO and CO2. Phys Chem Chem Phys. 21(19):9889–9894.
  • Humm JL, Nikjoo H. 2013. David E. Charlton (1936-2013). Radiat Res. 180(5):553–555.
  • Iablonskyi D, Nagaya K, Fukuzawa H, Motomura K, Kumagai Y, Mondal S, Tachibana T, Takanashi T, Nishiyama T, Matsunami K, et al. 2016. Slow interatomic Coulombic decay of multiply excited neon clusters. Phys Rev Lett. 117(27):276806.
  • Iablonskyi D, Ueda K, Ishikawa KL, Kheifets AS, Carpeggiani P, Reduzzi M, Ahmadi H, Comby A, Sansone G, Csizmadia T, et al. 2017. Observation and control of laser-enabled Auger decay. Phys Rev Lett. 119(7):073203
  • Ickenstein LM, Edwards K, Sjoberg S, Carlsson J, Gedda L. 2006. A novel 125I-labeled daunorubicin derivative for radionuclide-based cancer therapy. Nucl Med Biol. 33(6):773–783.
  • ICRP. 2007. Publication 103: the 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 37:1–332.
  • ICRU. 2011. ICRU Report No. 86. Quantification and reporting of low-dose and other heterogeneous exposures. J ICRU. 11(2):1–77.
  • Imstepf S, Pierroz V, Raposinho P, Bauwens M, Felber M, Fox T, Shapiro AB, Freudenberg R, Fernandes C, Gama S, et al. 2015. Nuclear targeting with an Auger electron emitter potentiates the action of a widely used antineoplastic drug. Bioconjug Chem. 26(12):2397–2407.
  • Iskandar W, Matsumoto J, Leredde A, Flechard X, Gervais B, Guillous S, Hennecart D, Mery A, Rangama J, Zhou CL, et al. 2015. Interatomic Coulombic decay as a new source of low energy electrons in slow ion-dimer collisions. Phys Rev Lett. 114(3):033201.
  • Iwayama H, Kaneyasu T, Hikosaka Y, Shigemasa E. 2016. Stability and dissociation dynamics of N2++ ions following core ionization studied by an Auger-electron-photoion coincidence method. J Chem Phys. 145(3):034305.
  • Jaaskela-Saari HA, Grenman R, Ramsay HA, Tarkkanen J, Paavonen T, Kairemo KJ. 2005. Indium-111-bleomycin complex in squamous cell cancer xenograft tumors of nude mice. Cancer Biother Radiopharm. 20(4):426–435.
  • Jablonski A, Powell CJ. 2017. Effective attenuation lengths for quantitative determination of surface composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J Electron Spectrosc Related Phenomena. 281:1–2.
  • Jeon JK, Han SM, Kim JK. 2016. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe. J Synchrotron Radiat. 23(Pt 5):1191–1196.
  • Kai T, Yokoya A, Ukai M, Fujii K, Toigawa T, Watanabe R. 2018. A significant role of non-thermal equilibrated electrons in the formation of deleterious complex DNA damage. Phys Chem Chem Phys. 20(4):2838–2844.
  • Kai T, Yokoya A, Ukai M, Fujii K, Watanabe R. 2016a. Deceleration processes of secondary electrons produced by a high-energy Auger electron in a biological context. Int J Radiat Biol. 92(11):654–659.
  • Kai T, Yokoya A, Ukai M, Fujii K, Watanabe R. 2016b. Dynamic behavior of secondary electrons in liquid water at the earliest stage upon irradiation: implications for DNA damage localization mechanism. J Phys Chem A. 120(42):8228–8233.
  • Kaminaga K, Noguchi M, Narita A, Hattori Y, Usami N, Yokoya A. 2016. Cell cycle tracking for irradiated and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam. Int J Radiat Biol. 92(11):739–744.
  • Kaneyasu T, Odagiri T, Nakagawa M, Mashiko R, Tanaka H, Adachi J, Hikosaka Y. 2017. Single, double, and triple Auger decays from 1s shake-up states of the oxygen molecule. J Chem Phys. 147(10):104304.
  • Kassis AI. 2004. The amazing world of Auger electrons. Int J Radiat Biol. 80(11-12):789–803.
  • Kassis AI, Adelstein SJ, Haydock C, Sastry KSR, McElvany KD, Welch MJ. 1982. Lethality of Auger electrons from the decay of bromine-77 in the DNA of mammalian cells. Radiat Res. 90(2):362–373.
  • Kassis AI, Fayad F, Kinsey BM, Sastry KSR, Taube RA, Adelstein SJ. 1987. Radiotoxicity of I-125 in mammalian cells. Radiat Res. 111(2):305–318.
  • Kelbg M, Zabel M, Krebs B, Kazak L, Meiwes-Broer KH, Tiggesbaumker J. 2019. Auger emission from the Coulomb explosion of helium nanoplasmas. J Chem Phys. 150(20):204302
  • Kiess AP, Minn I, Chen Y, Hobbs R, Sgouros G, Mease RC, Pullambhatla M, Shen CJ, Foss CA, Pomper MG. 2015. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 56(9):1401–1407.
  • Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. 2017. The clinical potential of senolytic drugs. J Am Geriatr Soc. 65(10):2297–2301.
  • Kojima T, Aihara H, Kodashima Y, Makishima H, Nakiri S, Takada S, Shimada H, Ukai M, Ozga C, Holzapfel X, et al. 2019. Novel analytical study for reaction intermediates in the primary radiation interaction of DNA using a synchrotron radiation-induced luminescence spectroscopy. Radiat Prot Dosimetry. 183(1-2):32–35.
  • Kortylewicz ZP, Mack E, Enke CA, Estes KA, Mosley RL, Baranowska-Kortylewicz J. 2015. Preclinical evaluation of investigational radiopharmaceutical RISAD-P intended for use as a diagnostic and molecular radiotherapy agent for prostate cancer. The Prostate. 75(1):8–22.
  • Kotzerke J, Runge R, Gotze P, Wunderlich G, Enghardt W, Freudenberg R. 2019. Radio- and photosensitization of plasmid DNA by DNA binding ligand propidium iodide: investigation of Auger electron induction and detection of Cherenkov-emission. Nuklearmedizin Nuclear Med. 58(4):319–327.
  • Ku A, Facca VJ, Cai Z, Reilly RM. 2019. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem. 4(1):27.
  • Kuleff AI, Kryzhevoi NV, Pernpointner M, Cederbaum LS. 2016. Core ionization initiates subfemtosecond charge migration in the valence shell of molecules. Phys Rev Lett. 117(9):093002.
  • Kumar SV, Tare ST, Upalekar YV, Tsering T. 2016. Dose controlled low energy electron irradiator for biomolecular films. Rev Sci Instrum. 87(3):034302
  • Ladjohounlou R, Lozza C, Pichard A, Constanzo J, Karam J, Le Fur P, Deshayes E, Boudousq V, Paillas S, Busson M, et al. 2019. Drugs that modify cholesterol metabolism alter the p38/JNK-mediated targeted and nontargeted response to alpha and Auger radioimmunotherapy. Clin Cancer Res. 25(15):4775–4790.
  • Lechtman E, Pignol JP. 2017. Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization. Sci Rep. 7(1):13268.
  • Lee D, Li M, Bednarz B, Schultz MK. 2018. Modeling cell and tumor-metastasis dosimetry with the particle and heavy ion transport code system (PHITS) software for targeted alpha-particle radionuclide therapy. Radiat Res. 190(3):236–247.
  • Lee BQ, Nikjoo H, Ekman J, Jonsson P, Stuchbery AE, Kibedi T. 2016. A stochastic cascade model for Auger-electron emitting radionuclides. Int J Radiat Biol. 92(11):641–653.
  • Leung CN, Canter BS, Rajon D, Back TA, Fritton JC, Azzam EI, Howell RW. 2020. Dose-dependent growth delay of breast cancer xenografts in the bone marrow of mice treated with 223Ra: the role of bystander effects and their potential for therapy. J Nucl Med. 61(1):89–95.
  • Leyton JV, Gao C, Williams B, Keating A, Minden M, Reilly RM. 2015. A radiolabeled antibody targeting CD123+ leukemia stem cells - initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML . Leuk Res Rep. 4(2):55–59.
  • Li L, Jaraquemada-Pelaez MG, Kuo HT, Merkens H, Choudhary N, Gitschtaler K, Jermilova U, Colpo N, Uribe-Munoz C, Radchenko V, et al. 2019. Functionally versatile and highly stable chelator for 111In and 177Lu: proof-of-principle prostate-specific membrane antigen targeting. Bioconjug Chem. 30(5):1539–1553.
  • Li HK, Morokoshi Y, Daino K, Furukawa T, Kamada T, Saga T, Hasegawa S. 2015. Transcriptomic signatures of Auger electron radioimmunotherapy using nuclear targeting 111In-Trastuzumab for potential combination therapies . Cancer Biother Radiopharm. 30(8):349–358.
  • Li Z, Vendrell O, Santra R. 2015. Ultrafast charge transfer of a valence double hole in glycine driven exclusively by nuclear motion. Phys Rev Lett. 115(14):143002
  • Liekhus-Schmaltz CE, Tenney I, Osipov T, Sanchez-Gonzalez A, Berrah N, Boll R, Bomme C, Bostedt C, Bozek JD, Carron S, et al. 2015. Ultrafast isomerization initiated by X-ray core ionization. Nat Commun. 6:8199
  • Liko F, Hindre F, Fernandez-Megia E. 2016. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules. 17(10):3103–3114.
  • Liu P, Boyle AJ, Lu Y, Adams J, Chi Y, Reilly RM, Winnik MA. 2015. Metal-chelating polymers (MCPs) with Zwitterionic pendant groups complexed to trastuzumab exhibit decreased liver accumulation compared to polyanionic MCP immunoconjugates. Biomacromolecules. 16(11):3613–3623.
  • Liu XJ, Nicolas C, Patanen M, Miron C. 2017. Disentangling Auger decays in O2 by photoelectron-ion coincidences. Sci Rep. 7(1):2898.
  • Lobachevsky P, Clark GR, Pytel PD, Leung B, Skene C, Andrau L, White JM, Karagiannis T, Cullinane C, Lee BQ, et al. 2016. Strand breakage by decay of DNA-bound 124I provides a basis for combined PET imaging and Auger endoradiotherapy. Int J Radiat Biol. 92(11):686–697.
  • Makrigiorgos GM, Kassis AI, Baranowska-Kortylewicz J, McElvany KD, Welch MJ, Sastry KSR, Adelstein SJ. 1989. Radiotoxicity of 5-[123I]iodo-2'-deoxyuridine in V79 cells: a comparison with 5-[125I]iodo-2'-deoxyuridine. Radiat Res. 118(3):532–544.
  • Martin RF, Feinendegen LE. 2016. The quest to exploit the Auger effect in cancer radiotherapy - a reflective review. Int J Radiat Biol. 92(11):617–632.
  • Martinez-Rovira I, Prezado Y. 2015. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med Phys. 42(11):6703–6710.
  • Martins CD, Kramer-Marek G, Oyen WJG. 2018. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv. 15(2):185–196.
  • Maucksch U, Runge R, Oehme L, Kotzerke J, Freudenberg R. 2018. Radiotoxicity of alpha particles versus high and low energy electrons in hypoxic cancer cells. Nuklearmedizin Nuclear Med. 57(2):56–63.
  • Maucksch U, Runge R, Wunderlich G, Freudenberg R, Naumann A, Kotzerke J. 2016. Comparison of the radiotoxicity of the 99mTc-labeled compounds 99mTc-pertechnetate, 99mTc-HMPAO and 99mTc-MIBI. Int J Radiat Biol. 92(11):698–706.
  • McMahon SJ, Paganetti H, Prise KM. 2016. Optimising element choice for nanoparticle radiosensitisers. Nanoscale. 8(1):581–589.
  • McMillan DD, Maeda J, Bell JJ, Genet MD, Phoonswadi G, Mann KA, Kraft SL, Kitamura H, Fujimori A, Yoshii Y, et al. 2015. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. J Radiat Res. 56(5):784–791.
  • McNamara AL, Kam WW, Scales N, McMahon SJ, Bennett JW, Byrne HL, Schuemann J, Paganetti H, Banati R, Kuncic Z. 2016. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol. 61(16):5993–6010.
  • Meitner L. 1923. Das β-strahlenspektrum von UX1 und seine deutung. Z Physik. 17(1):54–66.
  • Mikell J, Cheenu Kappadath S, Wareing T, Erwin WD, Titt U, Mourtada F. 2016. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine. Phys Med Biol. 61(12):4564–4582.
  • Miran T, Vogg ATJ, Drude N, Mottaghy FM, Morgenroth A. 2018. Modulation of glutathione promotes apoptosis in triple-negative breast cancer cells. FASEB J. 32(5):2803–2813.
  • Miran T, Vogg ATJ, El Moussaoui L, Kaiser HJ, Drude N, von Felbert V, Mottaghy FM, Morgenroth A. 2017. Dual addressing of thymidine synthesis pathways for effective targeting of proliferating melanoma. Cancer Med. 6(7):1639–1651.
  • Miteva T, Kazandjian S, Kolorenc P, Votavova P, Sisourat N. 2017. Interatomic Coulombic decay mediated by ultrafast superexchange energy transfer. Phys Rev Lett. 119(8):083403
  • Moser F, Hildenbrand G, Müller P, Al Saroori A, Biswas A, Bach M, Wenz F, Cremer C, Burger N, Veldwijk MR, et al. 2016. Cellular uptake of gold nanoparticles and their behavior as labels for localization microscopy. Biophys J. 110(4):947–953.
  • Mukherjee S, Shastry K, Anto CV, Joglekar PV, Nadesalingam MP, Xie S, Jiang N, Weiss AH. 2016. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy. Rev Sci Instrum. 87(3):035114.
  • Müller A, Borovik A, Jr., Buhr T, Hellhund J, Holste K, Kilcoyne AL, Klumpp S, Martins M, Ricz S, Viefhaus J, et al. 2015. Observation of a four-electron Auger process in near-K-edge photoionization of singly charged carbon ions. Phys Rev Lett. 114(1):013002.
  • Müller C, Domnanich KA, Umbricht CA, van der Meulen NP. 2018. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol. 91(1091):20180074.
  • Müller C, Umbricht CA, Gracheva N, Tschan VJ, Pellegrini G, Bernhardt P, Zeevaart JR, Koster U, Schibli R, van der Meulen NP. 2019. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 46(9):1919–1930.
  • Müller C, van der Meulen NP, Benesova M, Schibli R. 2017. Therapeutic radiometals beyond 177Lu and 90Y: production and application of promising α-particle, β-particle, and Auger electron emitters. J Nucl Med. 58(Suppl 2):91S–96S.
  • Murray PJ, Cornelissen B, Vallis KA, Chapman SJ. 2016. DNA double-strand break repair: a theoretical framework and its application. J Roy Soc Interf. 13(114):20150679.
  • Nagaya K, Iablonskyi D, Golubev NV, Matsunami K, Fukuzawa H, Motomura K, Nishiyama T, Sakai T, Tachibana T, Mondal S, et al. 2016a. Interatomic Coulombic decay cascades in multiply excited neon clusters. Nat Commun. 7:13477
  • Nagaya K, Motomura K, Kukk E, Takahashi Y, Yamazaki K, Ohmura S, Fukuzawa H, Wada S, Mondal S, Tachibana T, et al. 2016b. Femtosecond charge and molecular dynamics of I-containing organic molecules induced by intense X-ray free-electron laser pulses. Faraday Discuss. 194:537–562.
  • Narra VR, Harapanhalli RS, Howell RW, Sastry KSR, Rao DV, et al. 1992. Chemical protection against radionuclides in vivo: implications to the mechanism of the Auger effect. In: Howell RW, Narra VR, Sastry KSR., editors. Biophysical aspects of Auger processes. Woodbury, NY: AmerAmerican Institute of Physics.
  • Neti PV, Howell RW. 2006. Log normal distribution of cellular uptake of radioactivity: implications for biologic responses to radiopharmaceuticals. J Nucl Med. 47(6):1049–1058.
  • Nettleton JS, Lawson R. 1996. Cellular dosimetry of diagnostic radionuclides for spherical and ellipsoidal geometry. Phys Med Biol. 41(9):1845–1854.
  • Ngo Ndjock Mbong G, Lu Y, Chan C, Cai Z, Liu P, Boyle AJ, Winnik MA, Reilly RM. 2015. Trastuzumab labeled to high specific activity with 111In by site-specific conjugation to a metal-chelating polymer exhibits amplified auger electron-mediated cytotoxicity on HER2-positive breast cancer cells. Mol Pharm. 12(6):1951–1960.
  • Nicolas GP, Mansi R, McDougall L, Kaufmann J, Bouterfa H, Wild D, Fani M. 2017. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: the mass effect. J Nucl Med. 58(9):1435–1441.
  • Nicolas GP, Morgenstern A, Schottelius M, Fani M. 2019. New developments in peptide receptor radionuclide therapy. J Nucl Med. 60(2):167–171.
  • Nikjoo H, Girard P, Charlton DE, Hofer KG, Laughton CA. 2006. Auger electrons-a nanoprobe for structural, molecular and cellular processes. Radiat Prot Dosim. 122(1-4):72–79. Eng.
  • Oehme L, Bartzsch T, Maucksch U, Freudenberg R, Wunderlich G, Kotzerke J. 2018. [Combined internal-external radiotherapy (CIERT) in a cell model]. Nuklearmedizin Nuclear Med. 57(3):108–116.
  • Othman MF, Mitry NR, Lewington VJ, Blower PJ, Terry SY. 2017. Re-assessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol. 46:12–18.
  • Paillas S, Boudousq V, Piron B, Kersual N, Bardies M, Chouin N, Bascoul-Mollevi C, Arnaud FX, Pelegrin A, Navarro-Teulon I, et al. 2013. Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane. Nucl Med Biol. 40(4):471–480.
  • Paillas S, Ladjohounlou R, Lozza C, Pichard A, Boudousq V, Jarlier M, Sevestre S, Le Blay M, Deshayes E, Sosabowski J, et al. 2016. Localized irradiation of cell membrane by Auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects. Antioxidants Redox Signaling. 25(8):467–484.
  • Panosa C, Fonge H, Ferrer-Batalle M, Menendez JA, Massaguer A, De Llorens R, Reilly RM. 2015. A comparison of non-biologically active truncated EGF (EGFt) and full-length hEGF for delivery of Auger electron-emitting 111In to EGFR-positive breast cancer cells and tumor xenografts in athymic mice. Nucl Med Biol. 42(12):931–938.
  • Panyutin IG, Neumann RD. 1994. Sequence-specific DNA double-strand breaks induced by triplex forming 125I labeled oligonucleotides. Nucleic Acids Res. 22(23):4979–4982.
  • Panyutin IG, Winters TA, Feinendegen LE, Neumann RD. 2000. Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for anti-gene radiotherapy. Q J Nucl Med. 44(3):256–267.
  • Paro AD, Shanmugam I, van de Ven AL. 2017. Nanoparticle-mediated X-ray radiation enhancement for cancer therapy. Methods Mol Biol. 1530:391–401.
  • Pasternack JB, Domogauer JD, Khullar A, Akudugu JM, Howell RW. 2014. The advantage of antibody cocktails for targeted alpha therapy depends on specific activity. J Nucl Med. 55(12):2012–2019.
  • Peng YG, Wu Y, Zhu LF, Zhang SB, Wang JG, Liebermann HP, Buenker RJ. 2016. Complex multireference configuration interaction calculations for the K-vacancy Auger states of N(q+) (q = 2-5) ions. J Chem Phys. 144(5):054306.
  • Pereira E, do Quental L, Palma E, Oliveira MC, Mendes F, Raposinho P, Correia I, Lavrado J, Di Maria S, Belchior A, et al. 2017. Evaluation of acridine orange derivatives as DNA-targeted radiopharmaceuticals for Auger therapy: influence of the radionuclide and distance to DNA. Sci Rep. 7:42544
  • Pernpointner M, Knecht S. 2005. The influence of relativistic effects on the ionization spectra of the alkali iodides. Chem Phys Lett. 410(4-6):423–429.
  • Pernpointner M, Knecht S, Cederbaum LS. 2006. Ionization spectra and electronic decay in small iodide clusters: fully relativistic results. J Chem Phys. 125(3):34309eng.
  • Peters T, Grunewald C, Blaickner M, Ziegner M, Schutz C, Iffland D, Hampel G, Nawroth T, Langguth P. 2015. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy. Radiat Oncol. 10:52.
  • Piron B, Paillas S, Boudousq V, Pelegrin A, Bascoul-Mollevi C, Chouin N, Navarro-Teulon I, Pouget JP. 2014. DNA damage-centered signaling pathways are effectively activated during low dose-rate Auger radioimmunotherapy. Nucl Med Biol. 41(Suppl):e75–e83.
  • Piroozfar B, Raisali G, Alirezapour B, Mirzaii M. 2018. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit. Int J Radiat Biol. 94(4):385–393.
  • Pomplun E. 2000. Auger electron spectra-the basic data for understanding the Auger effect. Acta Oncologica. 39(6):673–679.
  • Pomplun E. 2016. Monte Carlo simulation of Auger electron cascades versus experimental data. Biomed Phys Eng Express. 2(1):015014.
  • Pomplun E, Booz J, Charlton DE. 1987. A Monte Carlo simulation of Auger cascades. Radiat Res. 111(3):533–552.
  • Pomplun E, Sutmann G. 2004. Is coulomb explosion a damaging mechanism for 125IUdR? Int J Radiat Biol. 80(11-12):855–860.
  • Pouget JP, Georgakilas AG, Ravanat JL. 2018. Targeted and off-target (Bystander and Abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal. 29(15):1447–1487.
  • Pouget JP, Santoro L, Raymond L, Chouin N, Bardies M, Bascoul-Mollevi C, Huguet H, Azria D, Kotzki PO, Pelegrin M, et al. 2008. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by Auger electrons. Radiat Res. 170(2):192–200.
  • Prise KM, O'Sullivan JM. 2009. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 9(5):351–360.
  • Pronschinske A, Pedevilla P, Coughlin B, Murphy CJ, Lucci FR, Payne MA, Gellman AJ, Michaelides A, Sykes EC. 2016. Atomic-scale picture of the composition, decay, and oxidation of two-dimensional radioactive films. ACS na. 10(2):2152–2158.
  • Protti N, Geninatti-Crich S, Alberti D, Lanzardo S, Deagostino A, Toppino A, Aime S, Ballarini F, Bortolussi S, Bruschi P, et al. 2015. Evaluation of the dose enhancement of combined 10B + 157Gd neutron capture therapy (NCT). Radiat Protect Dosimetry. 166(1-4):369–373.
  • Qaim SM, Spahn I. 2018. Development of novel radionuclides for medical applications. J Label Comp Radiopharm. 61(3):126–140.
  • Raghavan R, Howell RW, Zalutsky MR. 2017. A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers. Biomed Phys Eng Express. 3(3):035005.
  • Rakowski JT, Laha SS, Snyder MG, Buczek MG, Tucker MA, Liu F, Mao G, Hillman Y, Lawes G. 2015. Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film. Med Phys. 42(10):5937–5944.
  • Rao DV, Narra VR, Govelitz GF, Lanka VK, Howell RW, Sastry KSR. 1990. In vivo effects of 5.3 MeV alpha particles from Po-210 in mouse testes: comparison with internal Auger emitters. Radiat Prot Dosim. 31(1-4):329–332.
  • Reijonen V, Kanninen LK, Hippelainen E, Lou YR, Salli E, Sofiev A, Malinen M, Paasonen T, Yliperttula M, Kuronen A, et al. 2017. Multicellular dosimetric chain for molecular radiotherapy exemplified with dose simulations on 3D cell spheroids. Physica Medica. 40:72–78.
  • Reissig F, Mamat C, Steinbach J, Pietzsch HJ, Freudenberg R, Navarro-Retamal C, Caballero J, Kotzerke J, Wunderlich G. 2016. Direct and Auger electron-induced, single- and double-strand breaks on plasmid DNA caused by 99mTc-labeled pyrene derivatives and the effect of bonding distance. PLoS One. 11(9):e0161973.
  • Retif P, Bastogne T, Barberi-Heyob M. 2016. Robustness analysis of a Geant4-GATE simulator for nanoradiosensitizers characterization. IEEE Trans Nanobiosci. 15(3):209–217.
  • Rezaee M, Hill RP, Jaffray DA. 2017. The exploitation of low-energy electrons in cancer treatment. Radiat Res. 188(2):123–143.
  • Righi S, Ugolini M, Bottoni G, Puntoni M, Iacozzi M, Paparo F, Cabria M, Ceriani L, Gambaro M, Giovanella L, et al. 2018. Biokinetic and dosimetric aspects of 64CuCl2 in human prostate cancer: possible theranostic implications . EJNMMI Res. 8(1):18.
  • Roos AH, Eland JHD, Andersson J, Squibb RJ, Koulentianos D, Talaee O, Feifel R. 2018. Abundance of molecular triple ionization by double Auger decay. Sci Rep. 8(1):16405.
  • Roos AH, Eland JH, Andersson J, Zagorodskikh S, Singh R, Squibb RJ, Feifel R. 2016. Relative extent of double and single Auger decay in molecules containing C, N and O atoms. Phys Chem Chem Phys. 18(36):25705–25710.
  • Rosenkranz AA, Slastnikova TA, Karmakova TA, Vorontsova MS, Morozova NB, Petriev VM, Abrosimov AS, Khramtsov YV, Lupanova TN, Ulasov AV, et al. 2018. Antitumor activity of Auger electron emitter 111In delivered by modular nanotransporter for treatment of bladder cancer with EGFR overexpression. Front Pharmacol. 9:1331.
  • Roteta M, Fernandez-Martinez R, Mejuto M, Rucandio I. 2016. Preparation of graphene thin films for radioactive samples. Appl Radiat Isot. 109:217–221.
  • Royle G, Falzone N, Chakalova R, Vallis K, Myhra S. 2016. Internalization of Auger electron-emitting isotopes into cancer cells: a method for spatial distribution determination of equivalent source terms. Int J Radiat Biol. 92(11):633–640.
  • Royle G, Myhra S, Chakalova R, Vallis KA, Falzone N. 2015. Spatial distribution of Auger electrons emitted from internalised radionuclides in cancer cells: the photoresist autoradiography (PAR) method. Radiat Protect Dosimetry. 166(1-4):228–232.
  • Runge R, Oehme L, Kotzerke J, Freudenberg R. 2016. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters 223Ra, 188Re, and 99mTc. EJNMMI Res. 6(1):48
  • Sahu SK, Kortylewicz ZP, Baranowska-Kortylewicz J, Taube RA, Adelstein SJ, Kassis AI. 1997. The effects of indium-111 decay on pBR322 DNA. Radiat Res. 147(4):401–408.
  • Sakata D, Kyriakou I, Tran HN, Bordage MC, Rosenfeld A, Ivanchenko V, Incerti S, Emfietzoglou D, Guatelli S. 2019. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Physica Medica. 63:98–104.
  • Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. 2020. Therapy-induced senescence: an "Old" friend becomes the enemy. Cancers. 12(4):822.
  • Salim R, Taherparvar P. 2019. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values. Radiat Environ Biophys. 58(3):353–371.
  • Sann H, Havermeier T, Müller C, Kim H-K, Trinter F, Waitz M, Voigtsberger J, Sturm F, Bauer T, Wallauer R, et al. 2016. Imaging the temporal evolution of molecular orbitals during ultrafast dissociation. Phys Rev Lett. 117(24):243002.
  • Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki P-O, Pèlegrin M, Navarro-Teulon I, Pèlegrin A, Pouget J-P. 2009. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med. 50(12):2033–2041.
  • Santos ACF, Vasconcelos DN, MacDonald MA, Sant'Anna MM, Tenorio BNC, Rocha AB, Morcelle V, Appathurai N, Zuin L. 2018. Atomic versus molecular Auger decay in CH2Cl2 and CD2Cl2 molecules. J Chem Phys. 149(5):054303.
  • Sastry KSR, Rao DV. 1984. Dosimetry of low energy electrons. In: Rao DV, Chandra R, Graham M, editors. Physics of nuclear medicine: recent advances. New York: American Institute of Physics; p. 169–208.
  • Sastry KS. 1992. Biological effects of the Auger emitter iodine-125: a review. Report No. 1 of AAPM nuclear medicine task group no. 6. Med Phys. 19(6):1361–1370.
  • Schipper ML, Riese CG, Seitz S, Weber A, Behe M, Schurrat T, Schramm N, Keil B, Alfke H, Behr TM. 2007. Efficacy of 99mTc pertechnetate and 131I radioisotope therapy in sodium/iodide symporter (NIS)-expressing neuroendocrine tumors in vivo. Eur J Nuclear Med Mol Imaging. 34(5):638–650.
  • Schmitz S, Oskamp D, Pomplun E, Kriehuber R. 2015. Chromosome aberrations induced by the Auger electron emitter 125I. Mutat Res Genet Toxicol Environ Mutag. 793:64–70.
  • Schmitz S, Oskamp D, Pomplun E, Kriehuber R. 2016. Corrigendum to Chromosome aberrations induced by the Auger electron emitter 125I. Mutat Res Genetic Toxicol Environ Mutag. 793:64–70.
  • Sefl M, Incerti S, Papamichael G, Emfietzoglou D. 2015. Calculation of cellular S-values using Geant4-DNA: the effect of cell geometry. Appl Radiat Isot. 104:113–123.
  • Seifi Moradi M, Shirani Bidabadi B. 2018. Micro-dosimetry calculation of Auger-electron-emitting radionuclides mostly used in nuclear medicine using GEANT4-DNA. Appl Radiat Isot. 141:73–79.
  • Shinohara A, Hanaoka H, Sakashita T, Sato T, Yamaguchi A, Ishioka NS, Tsushima Y. 2018. Rational evaluation of the therapeutic effect and dosimetry of Auger electrons for radionuclide therapy in a cell culture model. Ann Nucl Med. 32(2):114–122.
  • Siragusa M, Baiocco G, Fredericia PM, Friedland W, Groesser T, Ottolenghi A, Jensen M. 2017. The COOLER code: a novel analytical approach to calculate subcellular energy deposition by internal electron emitters. Radiat Res. 188(2):204–220.
  • Sisourat N, Engin S, Gorfinkiel JD, Kazandjian S, Kolorenc P, Miteva T. 2017. On the computations of interatomic Coulombic decay widths with R-matrix method. J Chem Phys. 146(24):244109.
  • Sisourat N, Kazandjian S, Miteva T. 2017. Probing conformers of benzene dimer with intermolecular coulombic decay spectroscopy. J Phys Chem A. 121(1):45–50.
  • Slastnikova TA, Rosenkranz AA, Khramtsov YV, Karyagina TS, Ovechko SA, Sobolev AS. 2017a. Development and evaluation of a new modular nanotransporter for drug delivery into nuclei of pathological cells expressing folate receptors. Drug Design Dev Ther. 11:1315–1334.
  • Slastnikova TA, Rosenkranz AA, Morozova NB, Vorontsova MS, Petriev VM, Lupanova TN, Ulasov AV, Zalutsky MR, Yakubovskaya RI, Sobolev AS. 2017b. Preparation, cytotoxicity, and in vivo antitumor efficacy of 111In-labeled modular nanotransporters. Int J Nanomed. 12:395–410.
  • Slastnikova TA, Rosenkranz AA, Zalutsky MR, Sobolev AS. 2015. Modular nanotransporters for targeted intracellular delivery of drugs: folate receptors as potential targets. Curr Pharm Design. 21(9):1227–1238.
  • Sobolev AS. 2018. Modular nanotransporters for nuclear-targeted delivery of Auger electron emitters. Front Pharmacol. 9:952.
  • Sokolov MV, Smirnova NA, Camerini-Otero RD, Neumann RD, Panyutin IG. 2006. Microarray analysis of differentially expressed genes after exposure of normal human fibroblasts to ionizing radiation from an external source and from DNA-incorporated iodine-125 radionuclide. Gene. 382:47–56.
  • Song L, Falzone N, Vallis KA. 2016. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. Int J Radiat Biol. 92(11):716–723.
  • Spencer JA, Barclay M, Gallagher MJ, Winkler R, Unlu I, Wu YC, Plank H, McElwee-White L, Fairbrother DH. 2017. Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition. Beilstein J Nanotechnol. 8:2410–2424.
  • Spencer JA, Wu YC, McElwee-White L, Fairbrother DH. 2016. Electron induced surface reactions of cis-Pt(CO)2Cl2: a route to focused electron beam induced deposition of pure Pt nanostructures. J Am Chem Soc. 138(29):9172–9182.
  • Sreedharan S, Gill MR, Garcia E, Saeed HK, Robinson D, Byrne A, Cadby A, Keyes TE, Smythe C, Pellett P, et al. 2017. Multimodal super-resolution optical microscopy using a transition-metal-based probe provides unprecedented capabilities for imaging both nuclear chromatin and mitochondria. J Am Chem Soc. 139(44):15907–15913.
  • Sung W, Jung S, Ye SJ. 2016. Evaluation of the microscopic dose enhancement for nanoparticle-enhanced Auger therapy. Phys Med Biol. 61(21):7522–7535.
  • Taborda A, Benabdallah N, Desbree A. 2016. Dosimetry at the sub-cellular scale of Auger-electron emitter 99mTc in a mouse single thyroid follicle. Appl Radiat Isot. 108:58–63.
  • Taha E, Djouider F, Banoqitah E. 2018. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue. Austral Phys Eng Sci Med. 41(2):363–370.
  • Takanashi T, Nakamura K, Kukk E, Motomura K, Fukuzawa H, Nagaya K, Wada SI, Kumagai Y, Iablonskyi D, Ito Y, et al. 2017. Ultrafast Coulomb explosion of a diiodomethane molecule induced by an X-ray free-electron laser pulse. Phys Chem Chem Phys. 19(30):19707–19721.
  • Tang CY, Haasch RT, Dillon SJ. 2016. In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling. Chem Commun (Camb). 52(90):13257–13260.
  • Taupin F, Flaender M, Delorme R, Brochard T, Mayol JF, Arnaud J, Perriat P, Sancey L, Lux F, Barth RF, et al. 2015. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol. 60(11):4449–4464.
  • Terrissol M. 2016. Pierre Auger and Monte Carlo. Int J Radiat Biol. 92(11):616
  • Thisgaard H, Halle B, Aaberg-Jessen C, Olsen BB, Therkelsen ASN, Dam JH, Langkjaer N, Munthe S, Någren K, Høilund-Carlsen PF, et al. 2016. Highly effective Auger-electron therapy in an orthotopic glioblastoma xenograft model using convection-enhanced delivery. Theranostics. 6(12):2278–2291.
  • Tomita M, Maeda M, Usami N, Yokoya A, Watanabe R, Kobayashi K. 2016. Enhancement of DNA double-strand break induction and cell killing by K-shell absorption of phosphorus in human cell lines. Int J Radiat Biol. 92(11):724–732.
  • Travnikova O, Sisourat N, Marchenko T, Goldsztejn G, Guillemin R, Journel L, Ceolin D, Ismail I, Lago AF, Puttner R, et al. 2017. Subfemtosecond control of molecular fragmentation by hard X-ray photons. Phys Rev Lett. 118(21):213001.
  • Tsai WK, Wu AM. 2018. Aligning physics and physiology: Engineering antibodies for radionuclide delivery. J Label Comp Radiopharm. 61(9):693–714.
  • Unverricht-Yeboah M, Giesen U, Kriehuber R. 2018. Comparative gene expression analysis after exposure to 123I-iododeoxyuridine, γ- and α-radiation-potential biomarkers for the discrimination of radiation qualities. J Radiat Res. 59(4):411–429.
  • Uusijärvi H, Bernhardt P, Ericsson T, Forssell-Aronsson E. 2006. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution. Med Phys. 33(9):3260–3269.
  • Valdovinos HF, Hernandez R, Graves S, Ellison PA, Barnhart TE, Theuer CP, Engle JW, Cai W, Nickles RJ. 2017. Cyclotron production and radiochemical separation of 55Co and 58mCo from 54Fe, 58Ni and 57Fe targets. Appl Radiat Isot. 130:90–101.
  • Vaxenburg R, Rodina A, Shabaev A, Lifshitz E, Efros AL. 2015. Nonradiative Auger recombination in semiconductor nanocrystals. Nano Lett. 15(3):2092–2098.
  • Vaziri B, Wu H, Dhawan AP, Du P, Howell RW, SNMMI MIRD Committee 2014. MIRD pamphlet No. 25: MIRDcell V2.0 software tool for dosimetric analysis of biologic response of multicellular populations. J Nucl Med. 55(9):1557–1564.
  • Villagomez-Bernabe B, Currell FJ. 2019. Physical radiation enhancement effects around clinically relevant clusters of nanoagents in biological systems. Sci Rep. 9(1):8156.
  • Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. 2016. Triple targeting of Auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal. Int J Radiat Biol. 92(11):707–715.
  • Vultos F, Fernandes C, Mendes F, Marques F, Correia JDG, Santos I, Gano L. 2017. A multifunctional radiotheranostic agent for dual targeting of breast cancer cells. ChemMedChem. 12(14):1103–1107.
  • Walicka MA, Adelstein SJ, Kassis AI. 1998a. Indirect mechansims contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: clonogenic survival. Radiat Res. 149(2):142–146.
  • Walicka MA, Adelstein SJ, Kassis AI. 1998b. Indirect mechansims contribute to biological effects produced by decay of DNA-incorporated iodine-125 in mammalian cells in vitro: double-strand breaks. Radiat Res. 149(2):134–141.
  • Walicka MA, Ding Y, Adelstein SJ, Kassis AI. 2000. Toxicity of DNA-incorporated iodine-125: quantifying the direct and indirect effects. Radiat Res. 154(3):326–330.
  • Walther M, Preusche S, Bartel S, Wunderlich G, Freudenberg R, Steinbach J, Pietzsch HJ. 2015. Theranostic mercury: 197mHg with high specific activity for imaging and therapy. Appl Radiat Isot. 97:177–181.
  • Wang C, Sun A, Qiao Y, Zhang P, Ma L, Su M. 2015. Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. J Mater Chem B. 3(37):7372–7376.
  • Wang H, Zhang C, Rana F. 2015. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 15(1):339–345.
  • Watanabe R, Hattori Y, Kai T. 2016. Evaluation of DNA damage induced by Auger electrons from 137Cs. Int J Radiat Biol. 92(11):660–664.
  • Widel M. 2017. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy? Neoplasma. 64(5):641–654.
  • Won S, Huh YH, Cho LR, Lee HS, Byon ES, Park CJ. 2017. Cellular response of human bone marrow derived mesenchymal stem cells to titanium surfaces implanted with calcium and magnesium ions. Tissue Eng Regener Med. 14(2):123–131.
  • Wragg A, Gill MR, McKenzie L, Glover C, Mowll R, Weinstein JA, Su X, Smythe C, Thomas JA. 2015. Serum albumin binding inhibits nuclear uptake of luminescent metal-complex-based DNA imaging probes. Chemistry. 21(33):11865–11871.
  • Wright HA, Hamm RN, Turner JE, Howell RW, Rao DV, Sastry KSR. 1990. Calculations of physical and chemical reactions with DNA in aqueous solution from Auger cascades. Radiat Prot Dosim. 31(1-4):59–62.
  • Xie WZ, Friedland W, Li WB, Li CY, Oeh U, Qiu R, Li JL, Hoeschen C. 2015. Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Phys Med Biol. 60(16):6195–6212.
  • Xu X, Chong Y, Liu X, Fu H, Yu C, Huang J, Zhang Z. 2019. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomaterialia. 84:328–338.
  • Xue LY, Butler NJ, Makrigiorgos GM, Adelstein SJ, Kassis AI. 2002. Bystander effect produced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci USA. 99(21):13765–13770.
  • Yasui LS. 2012. Molecular and cellular effects of Auger emitters: 2008-2011. Int J Radiat Biol. 88(12):864–870.
  • Yasui LS, Duran M, Andorf C, Kroc T, Owens K, Allen-Durdan K, Schuck A, Grayburn S, Becker R. 2016. Autophagic flux in glioblastoma cells. Int J Radiat Biol. 92(11):665–678.
  • Yokoya A. 2016. The 8th Auger symposium: preface. Int J Radiat Biol. 92(11):614–615.
  • Yokoya A, Ito T. 2017. Photon-induced Auger effect in biological systems: a review. Int J Radiat Biol. 93(8):743–756.
  • You D, Fukuzawa H, Sakakibara Y, Takanashi T, Ito Y, Maliyar GG, Motomura K, Nagaya K, Nishiyama T, Asa K, et al. 2017. Charge transfer to ground-state ions produces free electrons. Nat Commun. 8:14277.
  • Zhang P, Qiao Y, Xia J, Guan J, Ma L, Su M. 2015. Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles. ACS Appl Mater Interf. 7(8):4518–4524.
  • Zhu C, Sempkowski M, Holleran T, Linz T, Bertalan T, Josefsson A, Bruchertseifer F, Morgenstern A, Sofou S. 2017. Alpha-particle radiotherapy: for large solid tumors diffusion trumps targeting. Biomaterials. 130:67–75.
  • Zhu Y, Zhang M, Luo L, Gill MR, De Pace C, Battaglia G, Zhang Q, Zhou H, Wu J, Tian Y, et al. 2019. NF-κB hijacking theranostic Pt(ll) complex in cancer therapy. Theranostics. 9(8):2158–2166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.