876
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Role of miRNAs in regulating responses to radiotherapy in human breast cancer

ORCID Icon, ORCID Icon & ORCID Icon
Pages 289-301 | Received 31 May 2020, Accepted 30 Nov 2020, Published online: 07 Jan 2021

References

  • Ades F, Tryfonidis K, Zardavas D. 2017. The past and future of breast cancer treatment-from the papyrus to individualised treatment approaches. ecancermedicalscience. 11:746.
  • Al-Assar O, Muschel RJ, Mantoni TS, McKenna WG, Brunner TB. 2009. Radiation response of cancer stem-like cells from established human cell lines after sorting for surface markers. Int J Radiat Oncol Biol Phys. 75(4):1216–1225.
  • Al-Thoubaity FK. 2020. Molecular classification of breast cancer: a retrospective cohort study. Ann Med Surg. 49:44–48.
  • Anastasov N, Höfig I, Vasconcellos IG, Rappl K, Braselmann H, Ludyga N, Auer G, Aubele M, Atkinson MJ. 2012. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol. 7(206):206–212.
  • Aratani S, Tagawa M, Nagasa S, Sakai Y, Akira S, Tsuruoka S. 2018. Radiation-induced premature cellular senescence involved in glomerular diseases in rats. Sci Rep. 8(1):16812.
  • Balbous A, Cortes U, Guilloteau K, Rivet P, Pinel B, Duchesne M, Godet J, Boissonnade O, Wager M, Bensadoun RJ, et al. 2016. A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells. BMC Cancer. 16:604.
  • Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. 2014. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 1:24.
  • Becker S. 2015. A historic and scientific review of breast cancer: the next global healthcare challenge. Int J Gynecol Obstetr. 131(Sup 1):S36–S39.
  • Bian L, Meng Y, Zhang M, Guo Z, Liu F, Zhang W, Ke X, Su Y, Wang M, Yao Y, et al. 2020. ATM expression is elevated in established radiation-resistant breast cancer cells and improves DNA repair efficiency. Int J Biol Sci. 16(7):1096–1106.
  • Blaisdell JO, Harrison L, Wallace SS. 2001. Base excision repair processing of radiation-induced clustered DNA lesions. Radiat Prot Dosimetry. 97(1):25–31.
  • Borrego-Soto G, Ortiz-López R, Rojas-Martínez A. 2015. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol. 38 (4):420–432.
  • Brody T. 2011. Clinical trials: study design, endpoints and biomarkers, drug safety, and FDA and ICH guidelines.
  • Bylicky MA, Mueller GP, Day RM. 2019. Radiation resistance of normal human astrocytes: the role of non-homologous end joining DNA repair activity. J Radiat Res. 60(1):37–50.
  • Cao X, Wen P, Fu Y, Gao Y, Qi X, Chen B, Tao Y, Wu L, Xu A, Lu H, et al. 2019. Radiation induces apoptosis primarily through the intrinsic pathway in mammalian cells. Cell Signal. 62:109337.
  • Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E. 2019. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 30(8):1194–1220.
  • Carlson RW. 2005. The history and mechanism of action of Fulvestrant. Clin Breast Cancer. 6(1):S5–S8.
  • Castedo M, Perfettini J, Roumier T, Andreau K, Medema R, Kroemer G. 2004. Cell death by mitotic catastrophe : a molecular definition. Oncogene. 23(16):2825–2837.
  • Chai Y, Yang X, Li Y, Qu Q. 2017. MicroRNA-185 overexpression sensitizes breast cancer cells to ionizing radiation: a potential therapeutic role in breast cancer. Int J Clin Exp Path. 10(1):274–281.
  • Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guérin F, Dumas I, Bossi A, Morice P, Viswanathan AN, et al. 2019. Brachytherapy: an overview for clinicians. CA Cancer J Clin. 69(5):386–401.
  • Dasari S, Tchounwou PB. 2014. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 740:364–378.
  • Deckbar D, Jeggo PA, Löbrich M. 2011. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit Rev Biochem Mol Biol. 46(4):271–283.
  • Ditsch N, Untch M, Thill M, Müller V, Janni W, Albert US, Bauerfeind I, Blohmer J, Budach W, Dall P, et al. 2019. AGO recommendations for the diagnosis and treatment of patients with early breast cancer: update 2019. Breast Care. 14(4):224–245.
  • Dodson H, Wheatley SP, Morrison CG. 2007. Involvement of centrosome amplification in radiation-induced mitotic catastrophe. Cell Cycle. 6(3):364–370.
  • Drohat AC, Coey CT. 2016. Role of base excision “repair” enzymes in erasing epigenetic marks from DNA. Chem Rev. 116(20):12711–12729.
  • Egeland NG, Lunde S, Jonsdottir K, Lende TH, Cronin-Fenton D, Gilje B, Janssen EAM, Søiland H. 2015. The role of microRNAs as predictors of response to tamoxifen treatment in breast cancer patients. Int J Mol Sci. 16(10):24243–24275.
  • Eriksson D, Stigbrand T. 2010. Radiation-induced cell death mechanisms. Tumour Biol. 31(4):363–372.
  • Fragomeni SM, Sciallis A, Jeruss JS. 2018. Molecular subtypes and local-regional control of breast cancer. Surg Oncol Clin N Am. 27(1):95–120.
  • Fu Y, Xiong J. 2016. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3. Croat Med J. 57(5):457–464.
  • Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. 2015. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 28(6):690–714.
  • Gampenrieder SP, Rinnerthaler G, Greil R. 2013. Neoadjuvant chemotherapy and targeted therapy in breast cancer: past, present, and future. J Oncol. 2013:732047.
  • Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, Carasi S, Palmieri D, Costinean S, Shapiro CL, et al. 2014. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci USA. 111(12):4536–4541.
  • Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. 2011. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 313(1):64–75.
  • Gol TM, Rodemann HP, Dittmann K. 2019. Depletion of Akt1 and Akt2 impairs the repair of radiation-induced DNA double strand breaks via homologous recombination. Int J Mol Sci. 20(24):6316.
  • Grinan-Lison C, Olivares-Urbano AM, Jimenez G, Lopez-Ruiz E, Val C, del Morata-Tarifa C, Entrena JM, Gonzalez-Ramirez AR, Boulaiz H, Herrera MZ, et al. 2020. miRNAs as radio-response biomarkers for breast cancer stem cells. Mol Oncol. 14(3):556–570.
  • Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. 2020. Targeted alpha therapy: current clinical applications. Cancer Biother Radiopharm. 35(6):404–417.
  • Heidari M, Shahbazi S, Ghodusi M. 2015. Evaluation of body esteem and mental health in patients with breast cancer after mastectomy. J Midlife Health. 6(4):173–177.
  • Hsu JC, Lu CY. 2016. Longitudinal trends in use and costs of targeted therapies for common cancers in Taiwan: a retrospective observational study. BMJ Open. 6(6):e011322.
  • Hu WZ, Tan CL, He YJ, Zhang GQ, Xu Y, Tang JH. 2018. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther. 11:1529–1541.
  • Hu X, Ding D, Zhang J, Cui J. 2019. Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218. Bioscience Reports. 39(4):BSR20181038.
  • Huang L, Liao L, Wan Y, Cheng A, Li M, Chen S, Li M, Tan X, Zeng G. 2016. Downregulation of annexin A1 is correlated with radioresistance in nasopharyngeal carcinoma. Oncol Lett. 12(6):5229–5234.
  • Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al. 2013. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73(23):6972–6986.
  • Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, Krylov SN, Fokas E, Boutros PC, Liu SK. 2015. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget. 6(26):22439–22451.
  • Jiang W, Jin G, Cai F, Chen X, Cao N, Zhang X, Liu J, Chen F, Wang F, Dong W, et al. 2019. Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response. Exp Mol Med. 51(2):1–20.
  • Johnston SJ, Cheung K-L. 2018. Endocrine therapy for breast cancer: a model of hormonal manipulation. Oncol Ther. 6(2):141–156.
  • Kato M, Paranjape T, Müller RU, Ullrich R, Nallur S, Gillespie E, Keane K, Esquela-Kerscher A, Weidhaas JB, Slack FJ. 2009. The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene. 28(25):2419–2424.
  • Kawamura K, Qi F, Kobayashi J. 2018. Potential relationship between the biological effects of low-dose irradiation and mitochondrial ROS production. J Radiat Res. 59(suppl_2):ii91–ii97.
  • Krause M, Dubrovska A, Linge A, Baumann M. 2017. Cancer stem cells: radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev. 109:63–73.
  • Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F. 2012. Radiation-induced reprogramming of breast cancer cells. Stem Cells. 30(5):833–844.
  • Lai Y, Chen Y, Lin Y, Ye L. 2018. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer. Cell Biol Int. 42(2):227–236.
  • Lee HC, Her N-G, Kang D, Jung SH, Shin J, Lee M, Bae IH, Kim YN, Park HJ, Ko YG, et al. 2017. Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase. Cell Death Dis. 8(3):e2693.
  • Lee KM, Choi EJ, Kim IA. 2011. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol. 101(1):171–176.
  • Lehmann-Che J, Andre F, Desmedt C, Mazouni C, Giacchetti S, Turpin E, Espie M, Plassa L-F, Marty M, Bertheau P, et al. 2010. Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers. Oncologist. 15(3):246–252.
  • Li L, Story M, Legerski RJ. 2001. Cellular responses to ionizing radiation damage. Int J Radiat Oncol. 49(4):1157–1162.
  • Li M, You L, Xue J, Lu Y. 2018. Ionizing radiation-induced cellular senescence in normal, non-transformed cells and the involved DNA damage response: a mini review. Front Pharmacol. 9:522.
  • Liang Z, Ahn J, Guo D, Votaw JR, Shim H. 2013. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 30(4):1008–1016.
  • Lieber MR. 2008. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 283(1):1–5.
  • Lin J, Liu C, Gao F, Mitchel RE, Zhao L, Yang Y, Lei J, Cai J. 2013. miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem. 114(3):606–615.
  • Liu L, Zhu Y, Liu A, Feng Y, Chen Y. 2019. Long noncoding RNA LINC00511 involves in breast cancer recurrence and radioresistance by regulating STXBP4 expression via miR-185. Eur Rev Med Pharmacol Sci. 23(17):7457–7468.
  • Liu Y, Yang M, Luo J, Zhou H. 2020. Radiotherapy targeting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci. 12(1):19.
  • Lou W, Liu J, Ding B, Xu L, Fan W. 2018. Identification of chemoresistance-associated miRNAs in breast cancer. Cancer Manag Res. 10:4747–4757.
  • Luo J, Chen J, He L. 2015. mir-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med Sci Monit. 21:4122–4129.
  • Luo M, Ding L, Li Q, Yao H. 2017. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα. Breast Cancer. 24(5):673–682.
  • Manstein V, von Min Yang C, Richter D, Delis N, Vafaizadeh V, Groner B. 2013. Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther. 8(3):193–202.
  • Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair. 7(10):1765–1771.
  • Mariotto AB, Robin Yabroff K, Shao Y, Feuer EJ, Brown ML. 2011. Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst. 103(2):117–128.
  • Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. 2019. Ionizing radiation and complex DNA damage: from prediction to detection challenges and biological significance. Cancers. 11(11):1789–1729.
  • Mehta RS, Barlow WE, Albain KS, Vandenberg TA, Dakhil SR, Tirumali NR, Lew DL, Hayes DF, Gralow JR, Linden HM, et al. 2019. Overall survival with Fulvestrant plus Anastrozole in metastatic breast cancer. N Engl J Med. 380(13):1226–1234.
  • Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C. 2015. The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res. 183(2):196–207.
  • Metheetrairut C, Adams BD, Nallur S, Weidhaas JB, Slack FJ. 2017. cel-mir-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation. Oncogene. 36(4):512–524.
  • Miller WR, Larionov AA. 2012. Understanding the mechanisms of aromatase inhibitor resistance. Breast Cancer Res. 14(1):201.
  • Moertl S, Mutschelknaus L, Heider T, Atkinson MJ. 2016. MicroRNAs as novel elements in personalized radiotherapy. Transl Cancer Res. 5(S6):S1262–S1269.
  • Muluhngwi P, Klinge CM. 2015. Roles for miRNAs in endocrine resistance in breast cancer. Endocr Relat Cancer. 22(5):R279–R300.
  • Munagala R, Aqil F, Gupta R. 2011. Promising molecular targeted therapies in breast cancer. Indian J Pharmacol. 43(3):236–245.
  • Murugappan K, Saboo A, Kuo L, Ung O. 2018. Paradigm shift in the local treatment of breast cancer: mastectomy to breast conservation surgery. Gland Surg. 7(6):506–519.
  • Nounou MI, Elamrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. 2015. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer. 9 (Suppl 2):17–34.
  • Pajic M, Froio D, Daly S, Doculara L, Millar E, Graham PH, Drury A, Steinmann A, Bock CE, De Boulghourjian A, et al. 2018. miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense. Cancer Res. 78(2):501–515.
  • Pascal JM. 2018. The comings and goings of PARP-1 in response to DNA damage. DNA Repair. 71:177–182.
  • Pearce A, Haas M, Viney R, Pearson S, Haywood P, Brown C, Ward R. 2017. Incidence and severity of self-reported chemotherapy side effects in routine care: a prospective cohort study. PLoS One. 12(10):e0184360.
  • Perez-Añorve IX, Gonzalez-De la Rosa CH, Soto-Reyes E, Beltran-Anaya FO, Del Moral-Hernandez O, Salgado-Albarran M, Angeles-Zaragoza O, Gonzalez-Barrios JA, Landero-Huerta DA, Chavez-Saldaña M, et al. 2019. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol. 13(5):1249–1267.
  • Poleszczuk J, Luddy K, Chen L, Lee JK, Harrison LB, Czerniecki BJ, Soliman H, Enderling H. 2017. Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res. 19(1):75.
  • Puhalla S, Bhattacharya S, Davidson NE. 2012. Hormonal therapy in breast cancer: a model disease for the personalization of cancer care. Mol Oncol. 6(2):222–236.
  • Ren Y, Fu F, Han J. 2015. MiR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27. Med Sci Monit. 21:1297–1303.
  • Rivankar S. 2014. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 10(4):853–858.
  • Rossi L, Biagioni C, McCartney A, Migliaccio I, Curigliano G, Sanna G, Moretti E, Minisini AM, Cinieri S, Tondini C, et al. 2019. Clinical outcomes after palbociclib with or without endocrine therapy in postmenopausal women with hormone receptor positive and HER2-negative metastatic breast cancer enrolled in the TREnd trial. Breast Cancer Res. 21(1):71.
  • Sautter-Bihl ML, Budach W, Dunst J, Feyer P, Haase W, Harms W, Sedlmayer F, Souchon R, Wenz F, Sauer R. 2007. DEGRO practical guidelines for radiotherapy of breast cancer I. Strahlenther Onkol. 183(12):661–666.
  • Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im S-A, Shaw Wright G, et al. 2018. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 379(22):2108–2121.
  • Schulz A, Meyer F, Dubrovska A, Borgmann K. 2019. Cancer stem cells and radioresistance: DNA repair and beyond. Cancers. 11(6):862.
  • Shi L, Tashiro S. 2018. Estimation of the effects of medical diagnostic radiation exposure based on DNA damage. J Radiat Res. 59(suppl_2):ii121–ii129.
  • Sun L, Legood R, Dos-Santos-Silva I, Gaiha SM, Sadique Z. 2018. Global treatment costs of breast cancer by stage: a systematic review. PLoS One. 13(11):e0207993.
  • Sun Q, Liu T, Yuan Y, Guo Z, Xie G, Du S, Lin X, Xu Z, Liu M, Wang W, et al. 2015. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer. 136(5):1003–1012.
  • Surova O, Zhivotovsky B. 2013. Various modes of cell death induced by DNA damage. Oncogene. 32(33):3789–3797.
  • Takesue T, Kawakubo H, Hayashida T, Tsutsui M, Miyao K, Fukuda K, Nakamura R, Takahashi T, Wada N, Takeuchi H, et al. 2017. Downregulation of cytochrome c oxidase 1 induced radioresistance in esophageal squamous cell carcinoma. Oncol Lett. 14(4):4220–4224.
  • Tan X, Li Z, Ren S, Rezaei K, Pan Q, Goldstein AT, Macri CJ, Cao D, Brem RF, Fu SW. 2019. Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer. Breast Cancer Res. 21(1):89.
  • Tang L, Matsushita H, Jingu K. 2018. Controversial issues in radiotherapy after breast-conserving surgery for early breast cancer in older patients: a systematic review. J Radiat Res. 59(6):789–793.
  • Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, et al. 2018. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 37(1):87.
  • Taylor MA, Das BC, Ray SK. 2018. Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma. Apoptosis. 23(11–12):563–575.
  • Thompson LH, Schild D. 2001. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res. 477(1–2):131–153.
  • Toufektchan E, Toledo F. 2018. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers. 10(5):135.
  • Traboulsi T, Ezzy M, El Gleason JL, Mader S. 2017. Antiestrogens: structure-activity relationships and use in breast cancer treatment. J Mol Endocrinol. 58(1):R15–R31.
  • Troschel FM, Böhly N, Borrmann K, Braun T, Schwickert A, Kiesel L, Eich HT, Götte M, Greve B. 2018. miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance in vitro. Tumour Biol. 40(8):1010428318791887–1010428318791810.
  • Ueno NT, Espinosa Fernandez JR, Cristofanilli M, Overmoyer B, Rea D, Berdichevski F, El-Shinawi M, Bellon J, Le-Petross HT, Lucci A, et al. 2018. International consensus on the clinical management of Inflammatory Breast Cancer from the Morgan Welch Inflammatory Breast Cancer research program 10th anniversary conference. J Cancer. 9(8):1437–1447.
  • Wang B, Li D, Filkowski J, Rodriguez-Juarez R, Storozynsky Q, Malach M, Carpenter E, Kovalchuk O. 2018. A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis. 7(7):54.
  • Wang B, Zheng J, Li R, Tian Y, Lin J, Liang Y, Sun Q, Xu A, Zheng R, Liu M, et al. 2019. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells. Cell Death Dis. 10(10):764.
  • Wang J, Song Wang H, Juan Qian H. l. 2018. Biological effects of radiation on cancer cells. Mil Med Res. 5(1):20.
  • Wang L, Huang X, Zheng X, Wang X, Li S, Zhang L, Yang Z, Xia Z. 2013. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. Int J Biol Sci. 9(5):472–479.
  • Wang L, Yuan C, Lv K, Xie S, Fu P, Liu X, Chen Y, Qin C, Deng W, Hu W. 2013. Lin28 mediates radiation resistance of breast cancer cells via regulation of caspase, H2A.X and Let-7 signaling. PLoS One. 8(6):e67373.
  • Weaver BA. 2014. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 25(18):2677–2681.
  • World Cancer Research Fund. 2020. Breast cancer statistics. [online] [Accessed 28 Apr 2020]. Available from: https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics.
  • World Health Organization. 2020. Breast cancer [online]. [Accessed 28 Apr 2020]. Available from: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/#:∼:text=Breastcanceristhemost,allcancerdeathsamongwomen.
  • Wu C, Guo E, Ming J, Sun W, Nie X, Sun L, Peng S, Luo M, Liu D, Zhang L, et al. 2020. Radiation-induced DNMT3B promotes radioresistance in nasopharyngeal carcinoma through methylation of p53 and p21. Mol Ther Oncolytics. 17:306–319.
  • Yamaguchi H, Chang S-S, Hsu J, Hung M-C. 2014. Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene. 33(9):1073–1081.
  • Yang B, Kuai F, Chen Z, Fu D, Liu J, Wu Y, Zhong J. 2020. miR-634 decreases the radioresistance of human breast cancer cells by targeting STAT3. Cancer Biother Radiopharm. 35(3):241–248.
  • Yi Z, Ma F, Liu B, Guan X, Li L, Li C, Qian H, Xu B. 2019. Everolimus in hormone receptor-positive metastatic breast cancer: PIK3CA mutation H1047R was a potential efficacy biomarker in a retrospective study. BMC Cancer. 19(1):442.
  • Yu L, Yang Y, Hou J, Zhai C, Song Y, Zhang Z, Qiu L, Jia X. 2015. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep. 34(4):1845–1852.
  • Yu X, Liu Y, Yin L, Peng Y, Peng Y, Gao Y, Yuan B, Zhu Q, Cao T, Xie B, et al. 2019. Radiation-promoted CDC6 protein stability contributes to radioresistance by regulating senescence and epithelial to mesenchymal transition. Oncogene. 38(4):549–563.
  • Zeng X, Kinsella TJ. 2010. BNIP3 is essential for mediating 6-thioguanine- and 5-fluorouracil-induced autophagy following DNA mismatch repair processing. Cell Res. 20(6):665–675.
  • Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG, Chen D, Sun Y, You MJ, Liu Y, Dean DC, et al. 2014. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 5(1):5671.
  • Zhang S, Wang B, Xiao H, Dong J, Li Y, Zhu C, Jin Y, Li H, Cui M, Fan S. 2020. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer. 11(7):1801–1816.
  • Zhang X, Li Y, Wang D, Wei X. 2017. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res. 50(1):27.
  • Zou Z, Chang H, Li H, Wang S. 2017. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis. 22(11):1321–1335.
  • Zurrida S, Bassi F, Arnone P, Martella S, Castillo A, Del, Martini RR, Semenkiw ME, Caldarella P. 2011. The changing face of mastectomy (from mutilation to aid to breast reconstruction). Int J Surg Oncol. 2011:980158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.