182
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose

ORCID Icon, , , , , , , & show all
Pages 642-656 | Received 31 Jul 2020, Accepted 11 Feb 2021, Published online: 15 Mar 2021

References

  • Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, Iacovoni JS, Daburon V, Miller KM, Jackson SP, et al. 2014. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol. 21(4):366–374.
  • Azzam EI, de Toledo SM, Little JB. 2001. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A. 98(2):473–478.
  • Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley K, Oldham M, Schreiner L. 2010. Polymer gel dosimetry. Phys Med Biol. 55(5):R1–R63.
  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. 2008. GammaH2AX and cancer. Nat Rev Cancer. 8(12):957–967.
  • Calabrese EJ. 2019. The linear No-Threshold (LNT) dose response model: a comprehensive assessment of its historical and scientific foundations. Chem Biol Interact. 301:6–25.
  • Carpenter AE, Memedula S, Plutz MJ, Belmont AS. 2005. Common effects of acidic activators on large-scale chromatin structure and transcription. Mol Cell Biol. 25(3):958–968.
  • Chailleux C, Aymard F, Caron P, Daburon V, Courilleau C, Canitrot Y, Legube G, Trouche D. 2014. Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nat Protoc. 9(3):517–528.
  • Chuang C-H, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS. 2006. Long-range directional movement of an interphase chromosome site. Curr Biol. 16(8):825–831.
  • Coates PJ, Rundle JK, Lorimore SA, Wright EG. 2008. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling. Cancer Res. 68(2):450–456.
  • Collins AR. 2004. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 26(3):249–261.
  • Collins AR. 2014. Measuring oxidative damage to DNA and its repair with the comet assay. Biochimica et Biophysica Acta. 1840(2):794–800.
  • Costes SV, Boissière A, Ravani S, Romano R, Parvin B, Barcellos-Hoff MH. 2006. Imaging features that discriminate between foci induced by high- and low-LET radiation in human fibroblasts. Radiat Res Soc. 165(5):505–515.
  • Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. 2010. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res. 704(1–3):78–87.
  • Costes SV, Ponomarev A, Chen JL, Nguyen D, Cucinotta FA, Barcellos-Hoff MH. 2007. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains. PLoS Comput Biol. 3(8):e155.
  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, et al. 2002. Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma. 111(1):22–36.
  • Crosbie JC, Anderson RL, Rothkamm K, Restall CM, Cann L, Ruwanpura S, Meachem S, Yagi N, Svalbe I, Lewis RA, et al. 2010. Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues. Int J Radiat Oncol Biol Phys. 77(3):886–894.
  • Crosbie JC, Svalbe I, Midgley SM, Yagi N, Rogers PAW, Lewis RA. 2008. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity. Phys Med Biol. 53(23):6861–6877.
  • Cuttler JM. 2019. Evidence of dose threshold for radiation-induced leukemia: absorbed dose and uncertainty. Dose Response. 17(1):1559325818820973.
  • Day LRJ, Pellicioli P, Gagliardi F, Barnes M, Smyth LML, Butler D, Livingstone J, Stevenson AW, Lye J, Poole CM, et al. 2020. A Monte Carlo model of synchrotron radiotherapy shows good agreement with experimental dosimetry measurements: data from the imaging and medical beamline at the Australian Synchrotron. Phys Med. 77:64–74.
  • de Feraudy S, Revet I, Bezrookove V, Feeney L, Cleaver JE. 2010. A minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks. Proc Natl Acad Sci U S A. 107(15):6870–6875.
  • DiBiase SJ, Zeng Z, Chen R, Hyslop T, Curran WJ, Iliakis G. 2000. DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res. 60(5):1245–1253.
  • Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S. 2007. Chromatin dynamics during DSB repair. Biochimica et Biophysica Acta. 1773(10):1534–1545.
  • Falk M, Lukášová E, Kozubek S. 2008. Chromatin structure influences the sensitivity of DNA to γ-radiation. Biochim Biophys Acta. 1783(12):2398–2414.
  • Falk M, Lukasova E, Kozubek S. 2010. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res. 704(1–3):88–100.
  • Fernandez-Palomo C, Schultke E, Smith R, Brauer-Krisch E, Laissue JA, Schroll C, Fazzari J, Seymour C, Mothersill C. 2013. Bystander effects in tumor-free and tumor-bearing rat brains following irradiation by synchrotron X-rays. Int J Radiat Biol. 89(6):445–453.
  • Figueroa-González G, Pérez-Plasencia C. 2017. Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett. 13(6):3982–3988.
  • Fournier P, Cornelius I, Dipuglia A, Cameron M, Davis JA, Cullen A, Petasecca M, Rosenfeld AB, Bräuer-Krisch E, Häusermann D, et al. 2017. X-tream dosimetry of highly brilliant x-ray microbeams in the MRT hutch of the Australian synchrotron. Radiat Meas. 106:405–411.
  • Furda A, Santos JH, Meyer JN, Van Houten B. 2014. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol. 1105:419–437.
  • Georgakilas AG, Redon CE, Ferguson NF, Kryston TB, Parekh P, Dickey JS, Nakamura AJ, Mitchell JB, Bonner WM, Martin OA. 2014. Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett. 353(2):248–257.
  • Georgescu W, Osseiran A, Rojec M, Liu Y, Bombrun M, Tang J, Costes SV. 2015. Characterizing the DNA damage response by cell tracking algorithms and cell features classification using high-content time-lapse analysis. PLoS One. 10(6):e0129438.
  • Goodarzi AA, Jeggo PA. 2009. ‘A mover and a shaker': 53BP1 allows DNA doublestrand breaks a chance to dance and unite. F1000 Biol Rep. 1:21.
  • Goodarzi AA, Jeggo PA. 2012. The heterochromatic barrier to DNA double strand break repair: how to get the entry visa. Int J Mol Sci. 13(9):11844–11860.
  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA. 2008. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular Cell. 31(2):167–177.
  • Goodarzi AA, Noon AT, Jeggo PA. 2009. The impact of heterochromatin on DSB repair. Biochem Soc Trans. 37(3):569–576.
  • Hall EJ, Giaccia AJ. 2006. Radiobiology for the radiologist. 6th ed. Philadelphia (PA): Lippincott Williams and Wilkins.
  • Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas AG, Gorgoulis VG. 2015. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 356(1):43–51.
  • Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, Cremer M, Cremer T. 2015. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenet Chromatin. 8(1):47.
  • Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PA, Paiva P. 2014. An evaluation of dose equivalence between synchrotron microbeam radiation therapy and conventional broad beam radiation using clonogenic and cell impedance assays. PLoS One. 9(6):e100547.
  • Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. 2011. γH2AX foci as a measure of DNA damage: a computational approach to automatic analysis. Mutat Res. 711(1–2):49–60.
  • Ivashkevich AN, Redon CE, Nakamura AJ, Martin RF, Martin OA. 2012. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327(1–2):123–133.
  • Ježková L, Falk M, Falková I, Davídková M, Bačíková A, Štefančíková L, Vachelová J, Michaelidesová A, Lukášová E, Boreyko A, et al. 2014. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action. Appl Radiat Isot. 83:128–136.
  • Jianxun H, Michael JH, Joan A-T. 2006. Quantitative analysis reveals asynchronous and more than DSB-associated histone H2AX phosphorylation after exposure to ionizing radiation. Radiat Res. 165(3):283.
  • Kakarougkas A, Jeggo PA. 2014. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol. 87(1035):20130685.
  • Karagiannis TC, Harikrishnan KN, Kn H, El-Osta A. 2007. Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments. Oncogene. 26(27):3963–3971.
  • Kegel P, Riballo E, Kühne M, Jeggo PA, Löbrich M. 2007. X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair (Amst). 6(11):1692–1697.
  • Kim J-A, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE. 2007. Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol. 178(2):209–218.
  • Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller WG, McNally JG, Bazett-Jones DP, Nussenzweig A. 2006. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 172(6):823–834.
  • Little JB. 2006. Cellular radiation effects and the bystander response. Mutat Res. 597(1–2):113–118.
  • Liu QY, Ribecco-Lutkiewicz M, Carson C, Testolin L, Bergeron D, Kohwi-Shigematsu T, Walker PR, Sikorska M. 2003. Mapping the initial DNA breaks in apoptotic Jurkat cells using ligation-mediated PCR. Cell Death Differ. 10(3):278–289.
  • Livingstone J, Adam JF, Crosbie JC, Hall CJ, Lye JE, McKinlay J, Pelliccia D, Pouzoulet F, Prezado Y, Stevenson AW, et al. 2017. Preclinical radiotherapy at the Australian synchrotron's imaging and medical beamline: instrumentation, dosimetry and a small-animal feasibility study. J Synchrotron Radiat. 24(Pt 4):854–865.
  • Livingstone J, Stevenson AW, Butler DJ, Häusermann D, Adam JF. 2016. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields. Med Phys. 43(7):4283–4293.
  • Lobachevsky P, Ivashkevich AN, Forrester HB, Stevenson AW, Hall CJ, Sprung CN, Martin OA. 2015. Assessment and implications of scattered microbeam and broadbeam synchrotron radiation for bystander effect studies. Radiat Res. 184(6):650–659.
  • Lobachevsky PN, Ventura J, Giannakandropoulou L, Forrester H, Palazzolo JS, Haynes NM, Stevenson AW, Hall CJ, Mason J, Pollakis G, et al. 2019. A functional immune system is required for the systemic genotoxic effects of localized irradiation. Int J Radiat Oncol Biol Phys. 103(5):1184–1193.
  • Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. 2010. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 9(4):662–669.
  • Low DA, Parikh P, Dempsey JF, Wahab S, Huq S. 2003. Ionization chamber volume averaging effects in dynamic intensity modulated radiation therapy beams. Med Phys. 30(7):1706–1711.
  • Lye JE, Harty PD, Butler DJ, Crosbie JC, Livingstone J, Poole CM, Ramanathan G, Wright T, Stevenson AW. 2016. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers. Phys Med Biol. 61(11):4201–4222.
  • MacPhail S, Banath J, Yu T, Chu E, Lambur H, Olive P. 2003. Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol. 79(5):351–359.
  • MacPhail SH, Banáth JP, Yu Y, Chu E, Olive PL. 2003. Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells. Radiat Res. 159(6):759–767.
  • McErlean CM, Brauer-Krisch E, Adamovics J, Doran SJ. 2016. Assessment of optical CT as a future QA tool for synchrotron x-ray microbeam therapy. Phys Med Biol. 61(1):320–337.
  • Mee LK, Adelstein SJ. 1987. Radiation damage to histone H2A by the primary aqueous radicals. Radiat Res. 110(2):155–160.
  • Morgan WF. 2003. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effectsin vivo, clastogenic factors and transgenerational effects. Radiat Res. 159(5):581–596.
  • Nakamura AJ, Parekh P, Martin OA, Bonner WM, Redon CE. 2012. Chapter 4, gamma-H2AX formation and chromatin structure. In: Urbano K, editor. Advances in genetics research. New York (USA): Nova Science Publishers; p. 128–152.
  • Oeck S, Malewicz NM, Hurst S, Rudner J, Jendrossek V. 2015. The Focinator-a new open-source tool for high-throughput foci evaluation of DNA damage. Radiat Oncol. 10(1):1–11.
  • Osley MA, Tsukuda T, Nickoloff JA. 2007. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res. 618(1–2):65–80.
  • Pfeifer GP, Chen HH, Komura J, Riggs AD. 1999. Chromatin structure analysis by ligation-mediated and terminal transferase-mediated polymerase chain reaction. Methods Enzymol. 304:548–571.
  • Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV. 2009. Pseudo-DNA damage response in senescent cells. Cell Cycle. 8(24):4112–4118.
  • Prise KM, O'Sullivan JM. 2009. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 9(5):351–360.
  • Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. 2009. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res. 43(8):1171–1178.
  • Redon CE, Dickey JS, Nakamura AJ, Kareva IG, Naf D, Nowsheen S, Kryston TB, Bonner WM, Georgakilas AG, Sedelnikova OA. 2010. Tumors induce complex DNA damage in distant proliferative tissues in vivo. Proc Natl Acad Sci U S A. 107(42):17992–17997.
  • Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, Dankort D, Cleaver JE. 2011. Functional relevance of the histone gammaH2Ax in the response to DNA damaging agents. Proc Natl Acad Sci U S A. 108(21):8663–8667.
  • Riballo E, Kühne M, Rief N, Doherty A, Smith GCM, Recio Ma J, Reis C, Dahm K, Fricke A, Krempler A, et al. 2004. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell. 16(5):715–724.
  • Rogakou EP, Boon C, Redon CE, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 146(5):905–915.
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 273(10):5858–5868.
  • Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. 2007. Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology. 242(1):244–251.
  • Rothkamm K, Crosbie JC, Daley F, Bourne S, Barber PR, Vojnovic B, Cann L, Rogers PA. 2012. In situ biological dose mapping estimates the radiation burden delivered to 'spared' tissue between synchrotron X-ray microbeam radiotherapy tracks. PLoS One. 7(1):e29853.
  • Rothkamm K, Löbrich M. 2003. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci. 100(9):5057–5062.
  • Schettino G, Folkard M, Michael BD, Prise KM. 2005. Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused CK X rays. Radiat Res. 163(3):332–336.
  • Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. 2004. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 6(2):168–170.
  • Sedelnikova OA, Nakamura A, Kovalchuk O, Koturbash I, Mitchell SA, Marino SA, Brenner DJ, Bonner WM. 2007. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 67(9):4295–4302.
  • Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM. 2002. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res. 158(4):486–492.
  • Siva S, Lobachevsky P, MacManus MP, Kron T, Möller A, Lobb RJ, Ventura J, Best N, Smith J, Ball D, et al. 2016. Radiotherapy for non-small cell lung cancer induces DNA damage response in both irradiated and out-of-field normal tissues. Clin Cancer Res. 22(19):4817–4826.
  • Smilenov LB, Hall EJ, Bonner WM, Sedelnikova OA. 2006. A microbeam study of DNA double-strand breaks in bystander primary human fibroblasts. Radiat Prot Dosimetry. 122(1–4):256–259.
  • Smyth LML, Donoghue JF, Ventura JA, Livingstone J, Bailey T, Day LRJ, Crosbie JC, Rogers PAW. 2018. Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci Rep. 8(1):12044.
  • Sokolov MV, Smilenov LB, Hall EJ, Panyutin IG, Bonner WM, Sedelnikova OA. 2005. Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts. Oncogene. 24(49):7257–7265.
  • Song S, Lambert PF. 1999. Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am J Pathol. 155(4):1121–1127.
  • Stepán V, Davídková M. 2006. Theoretical modelling of radiolytic damage of free DNA bases and within DNA macromolecule. Radiat Prot Dosimetry. 122(1–4):110–112.
  • Stevenson AW, Crosbie JC, Hall CJ, Häusermann D, Livingstone J, Lye JE. 2017. Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL). J Synchrotron Radiat. 24(Pt 1):110–141.
  • Tanooka H. 2001. Threshold dose-response in radiation carcinogenesis: an approach from chronic beta-irradiation experiments and a review of non-tumour doses. Int J Radiat Biol. 77(5):541–551.
  • Van Houten B, Cheng S, Chen Y. 2000. Measuring gene-specific nucleotide excision repair in human cells using quantitative amplification of long targets from nanogram quantities of DNA. Mutat Res. 460(2):81–94.
  • Ventura J, Lobachevsky PN, Palazzolo JS, Forrester H, Haynes NM, Ivashkevich A, Stevenson AW, Hall CJ, Ntargaras A, Kotsaris V, et al. 2017. Localized synchrotron irradiation of mouse skin induces persistent systemic genotoxic and immune responses. Cancer Res. 77(22):6389–6399.
  • Vieira Dias J, Gloaguen C, Kereselidze D, Manens L, Tack K, Ebrahimian TG. 2018. Gamma low-dose-rate ionizing radiation stimulates adaptive functional and molecular response in human aortic endothelial cells in a threshold-, dose-, and dose rate–dependent manner. Dose-Response. 16(1):155932581875523.
  • Wang H, Zeng Z-C, Bui T-A, Sonoda E, Takata M, Takeda S, Iliakis G. 2001. Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene. 20(18):2212–2224.
  • Widel M, Lalik A, Krzywon A, Poleszczuk J, Fujarewicz K, Rzeszowska-Wolny J. 2015. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status. Mutat Res. 778:61–70.
  • Yakovlev VA. 2015. Role of nitric oxide in the radiation-induced bystander effect. Redox Biol. 6:396–400.
  • Zhu Y, Biernacka A, Pardo B, Dojer N, Forey R, Skrzypczak M, Fongang B, Nde J, Yousefi R, Pasero P, et al. 2019. qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nat Commun. 10(1):2313.
  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y. 2006. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol. 8(8):870–876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.