185
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Static magnetic field of 0.2–0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice

ORCID Icon, , , , & ORCID Icon
Pages 746-754 | Received 18 Nov 2020, Accepted 25 Feb 2021, Published online: 19 Apr 2021

References

  • Aydin N, Bezer M. 2011. The effect of an intramedullary implant with a static magnetic field on the healing of the osteotomised rabbit femur. Int Orthop. 35(1):135–141.
  • Bassett CA, Pawluk RJ, Pilla AA. 1974. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 184(4136):575–577.
  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. 2010. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 25(7):1468–1486.
  • Camozzi V, Tossi A, Simoni E, Pagani F, Francucci CM, Moro L. 2007. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 30(6 Suppl):13–17.
  • Cunningham HC, West DWD, Baehr LM, Tarke FD, Baar K, Bodine SC, Christiansen BA. 2018. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats. BMC Musculoskelet Disord. 19(1):223.
  • Dong D, Yang J, Zhang G, Huyan T, Shang P. 2019. 16 T high static magnetic field inhibits receptor activator of nuclear factor kappa-Β ligand-induced osteoclast differentiation by regulating iron metabolism in Raw264.7 cells. J Tissue Eng Regen Med. 13(12):2181–2190.
  • He Y, Yu L, Liu J, Li Y, Wu Y, Huang Z, Wu D, Wang H, Wu Z, Qiu G. 2019. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4. Faseb J. 33(5):6069–6081.
  • Jing D, Cai J, Wu Y, Shen G, Li F, Xu Q, Xie K, Tang C, Liu J, Guo W, et al. 2014. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J Bone Miner Res. 29(10):2250–2261.
  • Kim EC, Leesungbok R, Lee SW, Lee HW, Park SH, Mah SJ, Ahn SJ. 2015. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics. 36(4):267–276.
  • Kim EC, Park J, Kwon IK, Lee SW, Park SJ, Ahn SJ. 2017. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells. J Periodontal Implant Sci. 47(5):273–291.
  • Kim EC, Park J, Noh G, Park SJ, Noh K, Kwon IK, Ahn SJ. 2018. Effects of moderate intensity static magnetic fields on osteoclastic differentiation in mouse bone marrow cells. Bioelectromagnetics. 39(5):394–404.
  • Lang TF, Leblanc AD, Evans HJ, Lu Y. 2006. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 21(8):1224–1230.
  • Li S, Yu B, Zhou D, He C, Zhuo Q, Hulme JM. 2013. Electromagnetic fields for treating osteoarthritis. Cochrane Database Syst Rev. (12):Cd003523.
  • Morey-Holton ER, Globus RK. 2002. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985). 92(4):1367–1377.
  • Ozcivici E, Judex S. 2014. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology. Bone. 67:122–129.
  • Puricelli E, Ulbrich LM, Ponzoni D, Filho JJ. 2006. Histological analysis of the effects of a static magnetic field on bone healing process in rat femurs. Head Face Med. 2:43.
  • Saifzadeh S, Hobbenaghi R, Shokouhi Sabet Jalali F, Kabiri B. 2007. Effect of a static magnetic field on bone healing in the dog: radiographic and histopathological studies. Iran J Vet Res. 8(1):8–15.
  • Sibonga JD, Evans HJ, Sung H, Spector E, Lang T, Oganov V, Bakulin A, Shackelford L, LeBlanc A. 2007. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 41(6):973–978.
  • Smith JK. 2020. Osteoclasts and Microgravity. Life (Basel, Switzerland). 10(9):207.
  • Taniguchi N, Kanai S. 2007. Efficacy of static magnetic field for locomotor activity of experimental osteopenia. Evid Based Complement Alternat Med. 4(1):99–105.
  • Turner CH, Burr DB. 1993. Basic biomechanical measurements of bone: a tutorial. Bone. 14(4):595–608.
  • Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C. 2000. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 355(9215):1607–1611.
  • Vico L, Hargens A. 2018. Skeletal changes during and after spaceflight. Nat Rev Rheumatol. 14(4):229–245.
  • Vico L, van Rietbergen B, Vilayphiou N, Linossier MT, Locrelle H, Normand M, Zouch M, Gerbaix M, Bonnet N, Novikov V, et al. 2017. Cortical and trabecular bone microstructure did not recover at weight-bearing skeletal sites and progressively deteriorated at non-weight-bearing sites during the year following international space station missions. J Bone Miner Res. 32(10):2010–2021.
  • Xu S, Okano H, Tomita N, Ikada Y. 2011. Recovery effects of a 180 mT static magnetic field on bone mineral density of osteoporotic lumbar vertebrae in ovariectomized rats. Evid Based Complement Alternat Med. 2011:1–8.
  • Xu S, Tomita N, Ohata R, Yan Q, Ikada Y. 2001. Static magnetic field effects on bone formation of rats with an ischemic bone model. Biomed Mater Eng. 11(3):257–263.
  • Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. 2003. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res. 82(12):962–966.
  • Yang J, Li J, Cui X, Li W, Xue Y, Shang P, Zhang H. 2020. Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone. 130:115108.
  • Yang J, Meng X, Dong D, Xue Y, Chen X, Wang S, Shen Y, Zhang G, Shang P. 2018. Iron overload involved in the enhancement of unloading-induced bone loss by hypomagnetic field. Bone. 114:235–245.
  • Yang J, Zhang H, Shang P. 2020. Effect of static magnetic field on bone and its molecular mechanism. Chin Sci Bull. 65(13):1238–1250.
  • Yu S, Shang P. 2014. A review of bioeffects of static magnetic field on rodent models. Prog Biophys Mol Biol. 114(1):14–24.
  • Yun HM, Ahn SJ, Park KR, Kim MJ, Kim JJ, Jin GZ, Kim HW, Kim EC. 2016. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 85:88–98.
  • Zhang H, Gan L, Zhu X, Wang J, Han L, Cheng P, Jing D, Zhang X, Shan Q. 2018. Moderate-intensity 4mT static magnetic fields prevent bone architectural deterioration and strength reduction by stimulating bone formation in streptozotocin-treated diabetic rats. Bone. 107:36–44.
  • Zhang J, Meng X, Ding C, Xie L, Yang P, Shang P. 2017. Regulation of osteoclast differentiation by static magnetic fields. Electromagn Biol Med. 36(1):8–19.
  • Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C. 2017. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics. 38(6):406–424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.