195
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Up-regulation of miR-144 and miR-375 in the human gastric cancer cell line following the exposure to extremely low-frequency electromagnetic fields

, &
Pages 1324-1332 | Received 08 Nov 2020, Accepted 04 Jun 2021, Published online: 23 Jun 2021

References

  • Abdi S, Dorranian D, Naderi GA, Razavi AE. 2016. Changes in physicochemical characteristics of human low density lipoprotein nano-particles by electromagnetic field exposure. Studia Universitatis Babes-Bolyai Chemia. 61:185–197.
  • Abdi S, Dorranian D, Razavi AE, Naderi GA, Boshtam M, Ghorannevis M. 2013. Evaluation of the effects of weak and moderate static magnetic fields on the characteristics of human low density lipoprotein in vitro. Bioelectromagnetics. 34(5):397–404.
  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 7(4):261–269.
  • An G, Zhou Y, Hou Q, Li Y, Jiang D, Guo G, Zhang C, Ding G. 2013. Effect of long-term power frequency electromagnetic field exposure on proliferation and apoptosis of SRA01/04 cells. Chin J Ind Hygiene Occup Dis. 31:246–250.
  • Bahar M, Majd A, Abdi S. 2009. Effects of (ELF) extremely low frequency (50 Hz) AC and DC magnetic fields on lentil germination and seedlings growth. J Theoret Appl Phys. 3(2):12–16.
  • Blank M, Goodman R. 2001. Electromagnetic initiation of transcription at specific DNA sites. J Cell Biochem. 81(4):689–692.
  • Capelli E, Torrisi F, Venturini L, Granato M, Fassina L, Lupo G, Ricevuti G. 2017. Low-frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of alzheimer’s disease. J Healthc Eng. 2017:1–10.
  • Consales C, Cirotti C, Giuseppe Filomeni G, Panatta M, Butera A, Caterina Merla C, Lopresto V, Pinto R, Marino C, Barbara Benassi B. 2018. Fifty-Hertz magnetic field affects the epigenetic modulation of the miR-34b/c in neuronal cells. Mol Neurobiol. 55(7):5698–5714.
  • Consales C, Merla C, Marino C, Benassi B. 2012. Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol. 2012:1–16.
  • Crocetti S, Beyer C, Schade G, Egli M, Frohlich J, Franco‐Obregon A. 2013. Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One. 8(9):e72944.
  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7(1):11–20.
  • Del Re B, Bersani F, Giorgi G. 2019. Effect of electromagnetic field exposure on the transcription of repetitive DNA elements in human cells. Electromagn Biol Med. 38(4):262–270.
  • Eder SH, Cadiou H, Muhamad A, McNaughton PA, Kirschvink JL, Winklhofer M. 2012. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc Natl Acad Sci USA. 109(30):12022–12027.
  • Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. 2018. miRNA expression profile is altered differentially in the rat brain compared to blood after experimental exposure to 50 Hz and 1 mT electromagnetic field. Prog Biophys Mol Biol. 132:35–42.
  • Esquela-Kerscher A, Slack FJ. 2006. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer. 6(4):259–269.
  • Esteller M, Corn PG, Baylin SB, Herman JG. 2001. A gene hypermethylation profile of human cancer. Cancer Res. 61(8):3225–3229.
  • Ferro A, Peleteiro B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N. 2014. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer. 50(7):1330–1344.
  • Filipovic N, Djukic T, Radovic M, Cvetkovic D, Curcic M, Markovic S, Peulic A, Jeremic B. 2014. Electromagnetic field investigation on different cancer cell lines. Cancer Cell Int. 14(1):1–10.
  • Grissom CB. 1995. Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem Rev. 95(1):3–24.
  • Han B, Feng D, Yu X, Liu Y, Yang M, Luo F, Zhou L, Liu F. 2018. MicroRNA‑144 mediates chronic inflammation and tumorigenesis in colorectal cancer progression via regulating C‑X‑C motif chemokine ligand 11. Exp Ther Med. 16:1935–1943.
  • Harris PA, Lamb J, Heaton B, Wheatley DN. 2002. Possible attenuation of the G2 DNA damage cell cycle checkpoint in HeLa cells by extremely low frequency (ELF) electromagnetic fields. Cancer Cell Int. 2(1):3.
  • He X, Chang Y, Meng F, Wang M, Xie Q, Tang F, Li P, Song Y, Lin J. 2012. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 31(28):3357–3369.
  • Heinrich A, Szostek A, Nees F, Meyer P, Semmler W, Flor H. 2011. Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta-analysis. J Magn Reson Imaging. 34(4):758–763.
  • Iannitti T, Fistetto G, Esposito A, Rottigni V, Palmieri B. 2013. Pulsed electromagnetic field therapy for management of osteoarthritis‐related pain, stiffness and physical function: clinical experience in the elderly. Clin Interv Aging. 8:1289–1293.
  • Iwaya T, Yokobori T, Nishida N, Kogo R, Sudo T, Tanaka F, Shibata K, Sawada G, Takahashi Y, Ishibashi M, et al. 2012. Downregulation of miR-144 is associated with colorectal cancer progression via activation of mTOR signaling pathway. Carcinogenesis. 33(12):2391–2397.
  • Jansson MD, Lund AH. 2012. MicroRNA and cancer. Mol Oncol. 6(6):590–610.
  • Jiang Y, Cai Y, Shao W, Li F, Guan Z, Zhou Y, Tang C, Feng S. 2019. MicroRNA‑144 suppresses aggressive phenotypes of tumor cells by targeting ANO1 in colorectal cancer. Oncol Rep. 41(4):2361–2370.
  • Kim SK, Choi JL, Kwon MK, Choi JY, Kim DW. 2013. Effects of 60 Hz magnetic fields on teenagers and adults. J Env Health. 12:42.
  • Kong KL, Kwong DLW, Chan TH-M, Law SY-K, Chen L, Li Y, Qin Y-R, Guan X-Y. 2012. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 61(1):33–42.
  • Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. 2020. MiR-144: a new possible therapeutic target in cancers. Int J Mol Sci. 21(7):2578.
  • Kruman I, Guo Q, Mattson MP. 1998. Calcium and reactive oxygen species mediate staurosporine‐induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res. 51(3):293–308.
  • Lee S, Su Z, Emdad L, Sarkar D, Franke T, Fisher P. 2008. Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling. Oncogene. 27(8):1114–1121.
  • Li L, Jia L, Ding Y. 2018. Upregulation of miR‑375 inhibits human liver cancer cell growth by modulating cell proliferation and apoptosis via targeting ErbB2. Oncol Lett. 16:3319–3326.
  • Li X, Lin R, Li J. 2011. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig Dis Sci. 56(10):2849–2856.
  • Liu Y, Liu WB, Liu KJ, Ao L, Cao J, Zhong JL, Liu JY. 2015. Extremely Low-Frequency Electromagnetic Fields Affect the miRNA-Mediated Regulation of Signaling Pathways in the GC-2 Cell Line. PLoS One. 10(10):e0139949.
  • Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. 2015. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health. 12:1–9.
  • Majidian Eydgahi S, Baharara J, Zafar Balanezhad S, Asadi Samani M. 2015. The synergic effect of glycyrrhizic acid and low frequency electromagnetic field on angiogenesis in chick chorioallantoic membrane. Avicenna J Phytomed. 5:174–181.
  • Martikainen P, Kyprianou N, Tucker RW, Isaacs JT. 1991. Programmed death of nonproliferating androgen-independent prostatic cancer cells. Cancer Res. 51(17):4693–4700.
  • Marzi MJ, Ghini F, Cerruti B, Pretis S, Bonetti P, Giacomelli C, Gorski MM, Kress T, Pelizzola M, Muller H, et al. 2016. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res. 26(4):554–565.
  • Mihai CT, Rotinberg P, Brinza F, Vochita G. 2014. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Env Health Sci Eng. 12:15.
  • Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA. 2010. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radic Biol Med. 48(4):579–589.
  • Panagopoulos DJ, Karabarbounis A, Margaritis LH. 2002. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 298(1):95–102.
  • Razavi S, Salimi M, Shahbazi-Gahrouei D, Karbasi S, Kermani S. 2014. Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells. Adv Biomed Res. 3(1):25.
  • Ren J, Ding L, Xu Q, Shi G, Li X, Li X, Ji J, Zhang D, Wang Y, Wang T, et al. 2017. LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci Rep. 7(1):749.
  • Ren YF, Zhang TH, Zhong S, Zhao YT, Lv YN. 2018. miR‑144 suppresses proliferation and induces apoptosis of osteosarcoma cells via direct regulation of mTOR expression. Oncol Lett. 15:1163–1169.
  • Ross CL. 2017. The use of electric, magnetic, and electromagnetic field for directed cell migration and adhesion in regenerative medicine. Biotechnol Prog. 33(1):5–16.
  • Schnoke M, Midura RJ. 2007. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res. 25(7):933–940.
  • Shi Z-c, Chu X-r, Wu Y-g, Wu J-h, Lu C-w, Lü R-x, Ding M-c, Mao N-f. 2015. MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA. Tumour Biol. 36(11):8579–8584.
  • Stoian I, Oros A, Moldoveanu E. 1996. Apoptosis and free radicals. Biochem Mol Med. 59(2):93–97.
  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al. 2004. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64(11):3753–3756.
  • Turner MC, Benke G, Bowman JD, Figuerola J, Fleming S, Hours M, Kincl L, Krewski D, McLean D, Parent M-E, et al. 2014. Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol Biomarkers Prev. 23(9):1863–1872.
  • Vadala M, Vallelunga A, Palmieri L, Palmieri B, Morales‐Medina JC, Iannitti T. 2015. Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson’s disease. Behav Brain Funct. 11:26.
  • Wang F, Li Y, Zhou J, Xu J, Peng C, Ye F, Shen Y, Lu W, Wan X, Xie X. 2011. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol. 179(5):2580–2588.
  • White JA, Blackmore PF, Schoenbach KH, Beebe SJ. 2004. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem. 279(22):22964–22972.
  • Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. 2008. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 123(2):372–379.
  • Yamaguchi S, Ogiue‐Ikeda M, Sekino M, Ueno S. 2006. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice. Bioelectromagnetics. 27(1):64–72.
  • Yan JW, Lin JS, He XX. 2014. The emerging role of miR-375 in cancer. Int J Cancer. 135(5):1011–1018.
  • Yao F, Li Z, Li C, Zhang L, Zha X, Jing J. 2019. Low frequency pulsed electromagnetic field promotes differentiation of oligodendrocyte precursor cells through upregulation of miR-219-5p in vitro. Life Sci. 223:185–193.
  • Yu L, Yang Y, Hou J, Zhai C, Song Y, Zhang Z, Qiu L, Jia X. 2015. MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Onco Rep. 34(4):1845–1852.
  • Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang CT, Ramaker R, Absher D, Myers RM, Kuster N, Costa FP, et al. 2012. Cancer cell proliferation is inhibited by specific modulation frequencies. Br J Cancer. 106(2):307–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.