259
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Implementation of simplified stochastic microdosimetric kinetic models into PHITS for application to radiation treatment planning

, , , &
Pages 1450-1460 | Received 26 Mar 2021, Accepted 07 Jul 2021, Published online: 30 Jul 2021

References

  • Bertolet A, Carabe A. 2020. Modelling dose effects from space irradiations: combination of high-LET and low-LET radiations with a modified microdosimetric kinetic model. Life. 10(9):161.
  • Boudard A, Cugnon J, David JC, Leray S, Mancusi D. 2013. New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys Rev C. 87(1):014606.
  • Chen YZ, Li JL, Li CY, Qiu R, Wu Z. 2018. A modified microdosimetric kinetic model for relative biological effectiveness calculation. Phys Med Biol. 63(1):015008.
  • Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M. 2012. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int J Radiat Biol. 88(1–2):103–107.
  • Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai E, Kanai T, Ando K. 2000. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated He-3-,C-12- and Ne-20-ion beams. Radiat Res. 154(5):485–496.2.0.CO;2]
  • González SJ, Santa Cruz GA. 2012. The photon-isoeffective dose in boron neutron capture therapy. Radiat Res. 178(6):609–621.
  • Hawkins RB. 1996. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int J Radiat Biol. 69(6):739–755.
  • Hawkins RB, Inaniwa T. 2013. A microdosimetric-kinetic model for cell killing by protracted continuous irradiation including dependence on LET I: repair in cultured mammalian cells. Radiat Res. 180(6):584–594.
  • Hirao Y, Ogawa H, Yamada S, Sato Y, Yamada T, Sato K, Itano A, Kanazawa M, Noda K, Kawachi K, et al. 1992. Heavy-ion synchrotron for medical use - Himac project at Nirs Japan. Nucl Phys A. 538:541–C550.
  • Hirayama H, Namito Y, Bielajew AF, Wilderman SJ, Nelson WR. 2005. The EGS5 code system. Menlo Park (CA): SLAC National Accelerator Laboratory; Tsukuba (Japan): High Energy Accelerator Research Organization.
  • Hobbs RF, Howell RW, Song H, Baechler S, Sgouros G. 2014. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy. Radiat Res. 181(1):90–98.
  • Hopewell JW, Morris GM, Schwint A, Coderre JA. 2011. The radiobiological principles of boron neutron capture therapy: a critical review. Appl Radiat Isot. 69(12):1756–1759.
  • IAEA. 2008. Relative biological effectiveness in ion beam therapy. Vienna (Austria): The International Atomic Energy Agency and the International Commission on Radiation Units and Measurements. IAEA Technical Reports Series 461.
  • ICRU. 1983. Microdosimetry. Bethesda (MD): International Commission on Radiation Units and Measurements. ICRU Report 36.
  • Inaniwa T, Kanematsu N, Matsufuji N, Kanai T, Shirai T, Noda K, Tsuji H, Kamada T, Tsujii H. 2015. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol. 60(8):3271–3286.
  • Inaniwa T, Kanematsu N. 2018. Adaptation of stochastic microdosimetric kinetic model for charged-particle therapy treatment planning. Phys Med Biol. 63(9):095011.
  • Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, Sakama M, Shinoda H. 2006. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res. 166(4):629–638.
  • Kase Y, Kanai T, Sakama M, Tameshige Y, Himukai T, Nose H, Matsufuji N. 2011. Microdosimetric approach to NIRS-defined biological dose measurement for carbon-ion treatment beam. J Radiat Res. 52(1):59–68.
  • Kellerer AM, Rossi HH. 1978. A generalized formation of dual radiation action. Radiat Res. 75(3):471–488.
  • Kumada H, Matsumura A, Sakurai H, Sakae T, Yoshioka M, Kobayashi H, Matsumoto H, Kiyanagi Y, Shibata T, Nakashima H. 2014. Project for the development of the linac based NCT facility in University of Tsukuba. Appl Radiat Isot. 88:211–215.
  • Kumada H, Takada K, Aihara T, Matsumura A, Sakurai H, Sakae T. 2020. Verification for dose estimation performance of a Monte-Carlo based treatment planning system in University of Tsukuba. Appl Radiat Isot. 166:109222.
  • Kumada H, Yamamoto K, Matsumura A, Yamamoto T, Nakagawa Y, Nakai K, Kageji T. 2004. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy. Phys Med Biol. 49(15):3353–3365.
  • Ma JS, Tseung HSWC, Courneyea L, Beltran C, Herman MG, Remmes NB. 2020. Robust radiobiological optimization of ion beam therapy utilizing Monte Carlo and microdosimetric kinetic model. Phys Med Biol. 65(15):155020.
  • Mairani A, Magro G, Tessonnier T, Bohlen TT, Molinelli S, Ferrari A, Parodi K, Debus J, Haberer T. 2017. Optimizing the modified microdosimetric kinetic model input parameters for proton and 4He ion beam therapy application. Phys Med Biol. 62(11):N244–N256.
  • Masuda A, Matsumoto T, Takada K, Onishi T, Kotaki K, Sugimoto H, Kumada H, Harano H, Sakae T. 2017. Neutron spectral fluence measurements using a Bonner sphere spectrometer in the development of the iBNCT accelerator-based neutron source. Appl Radiat Isot. 127:47–51.
  • Masunaga S, Sakurai Y, Tanaka H, Tano K, Suzuki M, Kondo N, Narabayashi M, Nakagawa Y, Watanabe T, Maruhashi A, et al. 2014. The dependency of compound biological effectiveness factors on the type and the concentration of administered neutron capture agents in boron neutron capture therapy. Springerplus. 3:128.
  • Matsuya Y, Sasaki K, Yoshii Y, Okuyama G, Date H. 2018. Integrated modelling of cell responses after irradiation for DNA-targeted effects and non-targeted effects. Sci Rep. 8(1):4849.
  • Niita K, Chiba S, Maruyama T, Maruyama T, Takada H, Fukahori T, Nakahara Y, Iwamoto A. 1995. Analysis of the (N,xN') reactions by quantum molecular dynamics plus statistical decay model. Phys Rev C Nucl Phys. 52(5):2620–2635.
  • Ogawa T, Sato T, Hashimoto S, Niita K. 2014. Development of a reaction ejectile sampling algorithm to recover kinematic correlations from inclusive cross-section data in Monte-Carlo particle transport simulations. Nucl Instrum Meth A. 763:575–590.
  • Ono K. 2016. An analysis of the structure of the compound biological effectiveness factor. J Radiat Res. 57(S1):i83–i89.
  • Santa Cruz GA, Palmer MR, Matatagui E, Zamenhof RG. 2001. A theoretical model for event statistics in microdosimetry. II: nonuniform distribution of heavy ion tracks. Med Phys. 28(6):997–1005.
  • Santa Cruz GA, Zamenhof RG. 2004. The microdosimetry of the B-10 reaction in boron neutron capture therapy: a new generalized theory. Radiat Res. 162(6):702–710.
  • Sato T, Furusawa Y. 2012. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Radiat Res. 178(4):341–356.
  • Sato T, Furuta T, Liu Y, Naka S, Nagamori S, Kanai Y, Watabe T. 2021. Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model. EJNMMI Phys. 8(1):4.
  • Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai PE, Matsuda N, Iwase H, et al. 2018. Features of particle and heavy ion transport code system PHITS Version 3.02. J Nucl Sci Technol. 55(6):684–690.
  • Sato T, Kase Y, Watanabe R, Niita K, Sihver L. 2009. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model. Radiat Res. 171(1):107–117.
  • Sato T, Masunaga S, Kumada H, Hamada N. 2018. Microdosimetric modeling of biological effectiveness for boron neutron capture therapy considering intra- and intercellular heterogeneity in 10B distribution. Sci Rep. 8(1):988.
  • Sato T, Masunaga S, Kumada H, Hamada N. 2019. Depth distributions of Rbe-weighted dose and photon-isoeffective dose for boron neutron capture therapy. Radiat Prot Dosimetry. 183(1–2):247–250.
  • Sato T, Watanabe R, Niita K. 2006. Development of a calculation method for estimating specific energy distribution in complex radiation fields. Radiat Prot Dosimetry. 122(1–4):41–45.
  • Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, et al. 2011. JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol. 48(1):1–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.