81
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Biological response to the continuous occupational exposure to antineoplastic drugs and radionuclides

ORCID Icon & ORCID Icon
Pages 1934-1947 | Received 05 Jan 2023, Accepted 11 Jul 2023, Published online: 07 Aug 2023

References

  • Bajnóczky K, Bühler EM. 1983. Sequence of centromere separation in cultured human amniotic cells. Acta Biol Hung. 34(1):107–109.
  • Bajnóczky K. 1985. Centromere separation sequence in aged women and men. Acta Biol Hung. 36(3-4):313–318.
  • Barra V, Fachinetti D. 2018. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun. 9(1):4340. doi: 10.1038/s41467-018-06545-y
  • Bartsch K, Knittler K, Borowski C, Rudnik S, Damme M, Aden K, Spehlmann ME, Frey N, Saftig P, Chalaris A, et al. 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet. 26(20):3960–3972. doi: 10.1093/hmg/ddx283
  • Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. 2016. Cardiovascular diseases related to ionizing radiation: the risk of low-dose exposure. Int J Mol Med. 38(6):1623–1641. doi: 10.3892/ijmm.2016.2777
  • Bharti SK, Khan I, Banerjee T, Sommers JA, Wu Y, Brosh RM. Jr. 2014. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cell Mol Life Sci. 71(14):2625–2639. doi: 10.1007/s00018-014-1569-4
  • Bonacci T, Emanuele MJ. 2019. Impressionist portraits of mitotic exit: APC/C, K11-linked ubiquitin chains and Cezanne. Cell Cycle. 18(6-7):652–660. doi: 10.1080/15384101.2019.1593646
  • Bouraoui S, Brahem A, Tabka F, Mrizek N, Saad A, Elghezal H. 2011. Assessment of chromosomal aberrations, micronuclei and proliferation rate index in peripheral lymphocytes from Tunisian nurses handling cytotoxic drugs. Environ Toxicol Pharmacol. 31(1):250–257. doi: 10.1016/j.etap.2010.11.004
  • Bouraoui S, Mougou S, Drira A, Tabka F, Bouali N, Mrizek N, Elghezal H, Saad A. 2013. A cytogenetic approach to the effects of low levels of ionizing radiation (IR) on the exposed Tunisian hospital workers. Int J Occup Med Environ Health. 26(1):144–154.
  • Broccoli D, Paweletz N, Vig BK. 1989. Sequence of centromere separation: characterization of multicentric chromosomes in a rat cell line. Chromosoma. 98(1):13–22. doi: 10.1007/BF00293330
  • Cai TJ, Lu X, Tian XL, Zhao H, Li S, Feng JB, Chen DQ, Tian M, Liu QJ. 2018. Effects of age and gender on the baseline and 2 Gy 60Co γ-ray-induced nucleoplasmic bridges frequencies in the peripheral blood lymphocytes of Chinese population. Mutat Res Genet Toxicol Environ Mutagen. 832-833:29–34. doi: 10.1016/j.mrgentox.2018.06.013
  • Caradonna F. 2015. Nucleoplasmic bridges and acrocentric chromosome associations as early markers of exposure to low levels of ionising radiation in occupationally exposed hospital workers. Mutagenesis. 30(2):269–275. doi: 10.1093/mutage/geu068
  • Cavallo D, Ursini CL, Perniconi B, Francesco AD, Giglio M, Rubino FM, Marinaccio A, Iavicoli S. 2005. Evaluation of genotoxic effects induced by exposure to antineoplastic drugs in lymphocytes and exfoliated buccal cells of oncology nurses and pharmacy employees. Mutat Res. 587(1–2):45–51. doi: 10.1016/j.mrgentox.2005.07.008
  • Cohen JF. 1988. Statistical power analysis for the behavioural sciences (2nd edn). Hillsdale (NJ): Lawrence Erlbaum Associates
  • El-Ebiary AA, Abuelfadl AA, Sarhan NI. 2013. Evaluation of genotoxicity induced by exposure to antineoplastic drugs in lymphocytes of oncology nurses and pharmacists. J Appl Toxicol. 33(3):196–201. doi: 10.1002/jat.1735
  • Farkas G, Kocsis ZS, Székely G, Dobozi M, Kenessey I, Polgár C, Jurányi Z. 2021. Smoking, chromosomal aberrations, and cancer incidence in healthy subjects. Mutat Res Genet Toxicol Environ Mutagen. 867:503373. doi: 10.1016/j.mrgentox.2021.503373
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2(5):1084–1104. doi: 10.1038/nprot.2007.77
  • Fenech M, Bonassi S. 2011. The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis. 26(1):43–49. doi: 10.1093/mutage/geq050
  • Fenech M. 2020. Cytokinesis-block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes. 11(10):1203. doi: 10.3390/genes11101203
  • Fransman W. 2006. Antineoplastic drugs: Occupational exposure and health risks [dissertation]. Utrecht: Thesis Utrecht University.
  • Gao J, Dong X, Liu T, Zhang L, Ao L. 2020. Antioxidant status and cytogenetic damage in hospital workers occupationally exposed to low dose ionizing radiation. Mutat Res Genet Toxicol Environ Mutagen. 850-851:503152. doi: 10.1016/j.mrgentox.2020.503152
  • Gajski G, Gerić M, Oreščanin V, Garaj-Vrhovac V. 2018. Cytokinesis-block micronucleus cytome assay parameters in peripheral blood lymphocytes of the general population: contribution of age, sex, seasonal variations and lifestyle factors. Ecotoxicol Environ Saf. 148:561–570. doi: 10.1016/j.ecoenv.2017.11.003
  • Gekara NO. 2017. DNA damage-induced immune response: micronuclei provide key platform. J Cell Biol. 216(10):2999–3001. doi: 10.1083/jcb.201708069
  • Geigl JB, Obenauf AC, Schwarzbraun T, Speicher MR. 2008. Defining ‘chromosomal instability’. Trends Genet. 24(2):64–69. doi: 10.1016/j.tig.2007.11.006
  • Gerić M, Popić J, Gajski G, Garaj-Vrhovac V. 2019. Cytogenetic status of interventional radiology unit workers occupationally exposed to low-dose ionising radiation: a pilot study. Mutat Res Genet Toxicol Environ Mutagen. 843:46–51. doi: 10.1016/j.mrgentox.2018.10.001
  • Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 548(7668):466–470. doi: 10.1038/nature23470
  • Haverić A, Gajski G, Beganović A, Rahmanović A, Hadžić Omanović M, Ćetković T, Haverić S. 2022. Medical personnel occupationally exposed to low-dose ionising radiation in Federation of Bosnia and Herzegovina: a cytogenetic study. Mutat Res Genet Toxicol Environ Mutagen. 882:503546. doi: 10.1016/j.mrgentox.2022.503546
  • Hellmuth S, Böttger F, Pan C, Mann M, Stemmann O. 2014. PP2A delays APC/C-dependent degradation of separase-associated but not free securin. Embo J. 33(10):1134–1147. doi: 10.1002/embj.201488098
  • Hoeijmakers JH. 2001. Genome maintenance mechanisms for preventing cancer. Nature. 411(6835):366–374. doi: 10.1038/35077232
  • International Atomic Energy Agency [IAEA]. 2005. Safety Reports Series No. 40. Applying Radiation Safety Standards in Nuclear Medicine. Vienna: International Atomic Energy Agency.
  • International Atomic Energy Agency, World Health Organization [IAEA, WHO]. 2011. EPR-Biodosimetry Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. Vienna: International Atomic Energy Agency
  • International Agency for Research on Cancer [IARC]. 2012. A Review of Human Carcinogens. Part A: Pharmaceuticals. Lyon: International Agency for Research on Cancer.
  • International Commission on Radiation Protection [ICRP]. 2007. ICRP publication 103. The 2007 recommendation of the international commission on radiation protection. Ottawa: International Commission on Radiation Protection.
  • Joseph LJ, Patwardhan UN, Samuel AM. 2004. Frequency of micronuclei in peripheral blood lymphocytes from subjects occupationally exposed to low levels of ionizing radiation. Mutat Res. 564(1):83–88. doi: 10.1016/j.mrgentox.2004.07.012
  • Jovicic D, Milacic S, Vukov T, Rakic B, Stevanovic M, Drakulic D, Rakic R, Bukvic N. 2010. Detection of premature segregation of centromeres in persons exposed to ionizing radiation. Health Phys. 98(5):717–727. doi: 10.1097/HP.0b013e3181d26da1
  • Kirsch-Volders M, Bonassi S, Knasmueller S, Holland N, Bolognesi C, Fenech MF. 2014. Commentary: critical questions, misconceptions and a road map for improving the use of the lymphocyte cytokinesis-block micronucleus assay for in vivo biomonitoring of human exposure to genotoxic chemicals-a HUMN project perspective. Mutat Res Rev Mutat Res. 759:49–58. doi: 10.1016/j.mrrev.2013.12.001
  • Kiselev SM, Sokolnikov ME, Lyss LV, Ilyina NI. 2017. Immunological monitoring of the personnel at radiation hazardous facilities. Radiat Prot Dosimetry. 173(1-3):124–130. doi: 10.1093/rpd/ncw346
  • Kopjar N, Garaj-Vrhovac V, Kasuba V, Rozgaj R, Ramić S, Pavlica V, Zeljezic D. 2009. Assessment of genotoxic risks in Croatian health care workers occupationally exposed to cytotoxic drugs: a multi-biomarker approach. Int J Hyg Environ Health. 212(4):414–431. doi: 10.1016/j.ijheh.2008.10.001
  • Krupina K, Goginashvili A, Cleveland DW. 2021. Causes and consequences of micronuclei. Curr Opin Cell Biol. 70:91–99. doi: 10.1016/j.ceb.2021.01.004
  • Little MP. 2013. A Review of Non-Cancer Effects, Especially Circulatory and Ocular Diseases. Radiat Environ Biophys. 52(4):435–449.
  • Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 548(7668):461–465. doi: 10.1038/nature23449
  • Mahmoodi M, Soleyman-Jahi S, Zendehdel K, Mozdarani H, Azimi C, Farzanfar F, Safari Z, Mohagheghi MA, Khaleghian M, Divsalar K, et al. 2017. Chromosomal aberrations, sister chromatid exchanges, and micronuclei in lymphocytes of oncology department personnel handling anti-neoplastic drugs. Drug Chem Toxicol. 40(2):235–240. doi: 10.1080/01480545.2016.1209678
  • Mahtab M, Boavida A, Santos D, Pisani FM. 2021. The genome stability maintenance DNA helicase DDX11 and its role in cancer. Genes. 12(3):395. doi: 10.3390/genes12030395
  • Major J, Jakab MG, Tompa A. 1999. The frequency of induced premature centromere division in human populations occupationally exposed to genotoxic chemicals. Mutat Res. 445(2):241–249. doi: 10.1016/s1383-5718(99)00129-1
  • Martin CA, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, Fetit AE, Keith C, Bicknell LS, Fluteau A, et al. 2016. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev. 30(19):2158–2172. doi: 10.1101/gad.286351.116
  • Mazouzi A, Velimezi G, Loizou JI. 2014. DNA replication stress: causes, resolution and disease. Exp Cell Res. 329(1):85–93. doi: 10.1016/j.yexcr.2014.09.030
  • Miszczyk J, Rawojć K, Panek A, Gałaś A, Kowalska A, Szczodry A, Brudecki K. 2019. Assessment of the nuclear medicine personnel occupational exposure to radioiodine. Eur J Radiol. 121:108712. doi: 10.1016/j.ejrad.2019.108712
  • Mothersill C, Seymour CB. 2004. Radiation-induced bystander effects-implications for cancer. Nat Rev Cancer. 4(2):158–164. doi: 10.1038/nrc1277
  • Moretti M, Grollino MG, Pavanello S, Bonfiglioli R, Villarini M, Appolloni M, Carrieri M, Sabatini L, Dominici L, Stronati L, et al. 2015. Micronuclei and chromosome aberrations in subjects occupationally exposed to antineoplastic drugs: a multicentric approach. Int Arch Occup Environ Health. 88(6):683–695. doi: 10.1007/s00420-014-0993-y
  • Musacchio A, Salmon ED. 2007. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 8(5):379–393. doi: 10.1038/nrm2163
  • Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, et al. 2020. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. Mutat Res Genet Toxicol Environ Mutagen. 858-860:503253. doi: 10.1016/j.mrgentox.2020.503253
  • National Institute for Occupational Safety and Health, Centres for Disease Control and Prevention, US Department of Health and Human Services, Public Health Service [NIOSH]. 2004. Preventing occupational exposures to antineoplastic and other hazardous drugs in healthcare settings. Publication. 3:5–6.
  • Pajic J, Rakic B, Jovicic D, Milovanovic A. 2016. A cytogenetic study of hospital workers occupationally exposed to radionuclides in Serbia: premature centromere division as novel biomarker of exposure? Int Arch Occup Environ Health. 89(3):477–484. doi: 10.1007/s00420-015-1086-2
  • Pajic J, Jovicic D, Milovanovic A. 2018. Cytogenetic surveillance of persons occupationally exposed to genotoxic chemicals. Arch Environ Occup Health. 73(5):313–321. doi: 10.1080/19338244.2017.1359144
  • Pajic J, Rovcanin B, Rakic B. 2021. Evaluation of genetic damage in persons occupationally exposed to antineoplastic drugs in Serbian hospitals. Ann Work Expo Health. 65(3):307–318. doi: 10.1093/annweh/wxaa100
  • Pan D, Du Y, Ren Z, Chen Y, Li X, Wang J, Hu B. 2016. Radiation induces premature chromatid separation via the miR-142-3p/Bod1 pathway in carcinoma cells. Oncotarget. 7(37):60432–60445. doi: 10.18632/oncotarget.11080
  • Porter IM, Schleicher K, Porter M, Swedlow JR. 2013. Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun. 4:2677–2685. doi: 10.1038/ncomms3677
  • Qian QZ, Cao XK, Shen FH, Wang Q. 2016. Effects of ionising radiation on micronucleus formation and chromosomal aberrations in Chinese radiation workers. Radiat Prot Dosimetry. 168(2):197–203.
  • Richardson DB, Cardis E, Daniels RD, Gillies M, O'Hagan JA, Hamra GB, Haylock R, Laurier D, Leuraud K, Moissonnier M, et al. 2015. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS. BMJ. 351:h5359.). doi: 10.1136/bmj.h5359
  • Roussel C, Witt KL, Shaw PB, Connor TH. 2019. Meta-analysis of chromosomal aberrations as a biomarker of exposure in healthcare workers occupationally exposed to antineoplastic drugs. Mutat Res Rev Mutat Res. 781:207–217. doi: 10.1016/j.mrrev.2017.08.002
  • Ruskovsky SR, Petrenko YW, Bezrukov VF. 2003. Premature centromere division as a biomarker of genotoxic influences. In: Abstract book of the Sixth International Symposium and Exhibition on environmental contamination in Central and Eastern Europe and the Commonwealth of independent status. Prague: Czech Republic p. 1–4.
  • Ropolo M, Balia C, Roggieri P, Lodi V, Nucci MC, Violante FS, Silingardi P, Colacci A, Bolognesi C. 2012. The micronucleus assay as a biological dosimeter in hospital workers exposed to low doses of ionizing radiation. Mutat Res. 747(1):7–13. doi: 10.1016/j.mrgentox.2012.02.014
  • Saberi A, Salari E, Latifi SM. 2013. Cytogenetic analysis in lymphocytes from radiation workers exposed to low level of ionizing radiation in radiotherapy, CT-scan and angiocardiography units. Mutat Res. 750(1-2):92–95. doi: 10.1016/j.mrgentox.2012.10.001
  • Sahin A, Tatar A, Oztas S, Seven B, Varoglu E, Yesilyurt A, Ayan AK. 2009. Evaluation of the genotoxic effects of chronic low-dose ionizing radiation exposure on nuclear medicine workers. Nucl Med Biol. 36(5):575–578. doi: 10.1016/j.nucmedbio.2009.02.003
  • Sari-Minodier I, Orsière T, Auquier P, Martin F, Botta A. 2007. Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutat Res. 629(2):111–121. doi: 10.1016/j.mrgentox.2007.01.009
  • Shafiee M, Borzoueisileh S, Rashidfar R, Dehghan M, Jaafarian Sisakht Z. 2020. Chromosomal aberrations in C-arm fluoroscopy, CT-scan, lithotripsy, and digital radiology staff. Mutat Res Genet Toxicol Environ Mutagen. 849:503131. doi: 10.1016/j.mrgentox.2020.503131
  • Siama Z, Zosang-Zuali M, Vanlalruati A, Jagetia GC, Pau KS, Kumar NS. 2019. Chronic low dose exposure of hospital workers to ionizing radiation leads to increased micronuclei frequency and reduced antioxidants in their peripheral blood lymphocytes. Int J Radiat Biol. 95(6):697–709. doi: 10.1080/09553002.2019.1571255
  • Spremo-Potparevic B, Zivkovic L, Djelic N, Bajic V. 2004. Analysis of premature centromere division (PCD) of the X chromosome in Alzheimer patients through cell cycle. Exp Gerontol. 39(5):849–854. doi: 10.1016/j.exger.2004.01.012
  • Tian XL, Lu X, Cai TJ, Lyu YM, Tian M, Liu QJ. 2021. Cytogenetic monitoring of peripheral blood lymphocytes from medical radiation professionals occupationally exposed to low-dose ionizing radiation. Mutat Res Genet Toxicol Environ Mutagen. 867:503370. doi: 10.1016/j.mrgentox.2021.503370
  • Uwineza A, Kalligeraki AA, Hamada N, Jarrin M, Quinlan RA. 2019. Cataractogenic load – a concept to study the contribution of ionizing radiation to accelerated aging in the eye lens. Mutat Res Rev Mutat Res. 779:68–81. doi: 10.1016/j.mrrev.2019.02.004
  • Villarini M, Dominici L, Fatigoni C, Muzi G, Monarca S, Moretti M. 2012. Biological effect monitoring in peripheral blood lymphocytes from subjects occupationally exposed to antineoplastic drugs: assessment of micronuclei frequency. J Occup Health. 54(6):405–415. doi: 10.1539/joh.12-0038-oa
  • Villarini M, Gianfredi V, Levorato S, Vannini S, Salvatori T, Moretti M. 2016. Occupational exposure to cytostatic/antineoplastic drugs and cytogenetic damage measured using the lymphocyte cytokinesis-block micronucleus assay: a systematic review of the literature and meta-analysis. Mutat Res Rev Mutat Res. 770(Pt A):35–45. doi: 10.1016/j.mrrev.2016.05.001
  • Wang LH, Mayer B, Stemmann O, Nigg EA. 2010. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. J Cell Sci. 123(5):806–813. doi: 10.1242/jcs.058255
  • Wilhelm T, Said M, Naim V. 2020. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel). 10;11(6):642. doi: 10.1242/jcs.058255
  • Wojda A, Zietkiewicz E, Mossakowska M, Pawłowski W, Skrzypczak K, Witt M. 2006. Correlation between the level of cytogenetic aberrations in cultured human lymphocytes and the age and gender of donors. J Gerontol A Biol Sci Med Sci. 61(8):763–772. doi: 10.1093/gerona/61.8.763
  • Zakeri F, Hirobe T. 2010. A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. Eur J Radiol. 73(1):191–195. doi: 10.1016/j.ejrad.2008.10.015
  • Zeman MK, Cimprich KA. 2014. Causes and consequences of replication stress. Nat Cell Biol. 16(1):2–9. doi: 10.1038/ncb2897

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.