645
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Assessing the impact of neutron relative biological effectiveness on all solid cancer mortality risks in the Japanese atomic bomb survivors

ORCID Icon, ORCID Icon & ORCID Icon
Pages 61-71 | Received 23 Feb 2023, Accepted 31 Jul 2023, Published online: 29 Sep 2023

References

  • Brenner AV, Preston DL, Sakata R, Cologne J, Sugiyama H, Utada M, Cahoon EK, Grant E, Mabuchi K, Ozasa K. 2022. Comparison of all solid cancer mortality and incidence dose–response in the life span study of atomic bomb survivors, 1958–2009. Radiat Res. 197(5):491–508. doi:10.1667/RADE-21-00059.1
  • Cordova KA, Cullings HM. 2019. Assessing the relative biological effectiveness of neutrons across organs of varying depth among the atomic bomb survivors. Radiat Res. 192(4):380–387. doi:10.1667/RR15391.1
  • Cullings HM, Grant EJ, Egbert SD, Watanabe T, Oda T, Nakamura F, Yamashita T, Fuchi H, Funamoto S, Marumo K, et al. 2017. DS02R1: improvements to atomic bomb survivors’ input data and implementation of dosimetry system 2002 (DS02) and resulting changes in estimated doses. Health Phys. 112(1):56–97. doi:10.1097/HP.0000000000000598
  • Fieller EC. 1940. The biological standardization of insulin. Suppl J R Stat Soc. 7(1):1–64. doi:10.2307/2983630
  • Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, Cahoon EK, Milder CM, Soda M, Cullings HM, et al. 2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res. 188(3):370–371. doi:10.1667/RR14492.1
  • Griffin K, Paulbeck C, Bolch W, Cullings H, Egbert S, Funamoto S, Sato T, Endo A, Hertel N, Lee C. 2019. Dosimetric impact of a new computational voxel phantom series for the Japanese atomic bomb survivors: children and adults. Radiat Res. 191(4):369–379. doi:10.1667/RR15267.1
  • Griffin KT, Sato T, Funamoto S, Chizhov K, Domal S, Paulbeck C, Bolch W, Cullings HM, Egbert S, Endo A, et al. 2022. Japanese pediatric and adult atomic bomb survivor dosimetry: potential improvements using the J45 phantom series and modern Monte Carlo transport. Radiat Environ Biophys. 61(1):73–86. doi:10.1007/s00411-021-00946-2
  • Hafner L, Walsh L, Rühm W. 2023. Assessing the impact of different neutron RBEs on the all solid cancer radiation risks obtained from the Japanese A-bomb survivors data. Int J Radiat Biol. 99(4):629–643. doi:10.1080/09553002.2022.2117871
  • Hafner L, Walsh L, Schneider U. 2021. Cancer incidence risks above and below 1 Gy for radiation protection in space. Life Sci Space Res. 28:41–56. doi:10.1016/j.lssr.2020.09.001
  • ICRP. 2003. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (wR). ICRP Publication 92. Ann ICRP 33.
  • ICRP. 2007. ICRP recommendations of the international commission on radiological protection. ICRP Publication 103. Ann ICRP 37.
  • Kellerer AM, Rühm W, Walsh L. 2006. Indications of the neutron effect contribution in the solid cancer data of the A-bomb survivors. Health Phys. 90(6):554–564. doi:10.1097/01.HP.0000184917.94232.cd
  • Kellerer AM, Walsh L. 2001. Risk estimating for fast neutrons with regard to solid cancer. Radiat Res. 156(6):708–717. doi:10.1667/0033-7587(2001)156[0708:reffnw[PMC]2.0.co;2]
  • Little MP, Muirhead CR. 2000. Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose response in Japanese atomic bomb survivors. Int J Radiat Biol. 76(7):939–953. doi:10.1080/09553000050050954
  • Little MP, Pawel D, Misumi M, Hamada N, Cullings HM, Wakeford R, Ozasa K. 2020. Lifetime mortality risk from cancer and circulatory disease predicted from the Japanese atomic bomb survivor life span study data taking account of dose measurement error. Radiat Res. 194(3):259–276. doi:10.1667/RR15571.1
  • Little MP. 1997. Estimates of neutron relative biological effectiveness derived from the Japanese atomic bomb survivors. Int J Radiat Biol. 72(6):715–726. doi:10.1080/095530097142870
  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K. 2012. Studies of the mortality of atomic bomb survivors, report 14, 1950–2003: an overview of cancer and noncancer disease. Radiat Res. 177(3):229–243. doi:10.1667/rr2629.1
  • Preston DL, Pierce DA, Shimizu Y, Cullings HM, Fujita S, Funamoto S, Kodama K. 2004. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res. 162(4):377–389. doi:10.1667/rr3232
  • Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K. 2007. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 168(1):1–64. doi:10.1667/RR0763.1
  • Rühm W, Walsh L. 2007. Current risk estimates based on the A-bomb survivors data—a discussion in terms of the ICRP recommendations on the neutron weighting factor. Radiat Prot Dosimetry. 126(1–4):423–431. doi:10.1093/rpd/ncm087
  • Satoh K, Yasuda H, Kawakami H, Tashiro S. 2018. Relative biological effectiveness of neutrons derived from the excess relative risk model with the atomic bomb survivors data managed by Hiroshima University. Radiat Prot Dosimetry. 180(1–4):346–350. doi:10.1093/rpd/ncx173
  • Walsh L. 2013. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from gamma-ray and neutron absorbed doses with hierarchical partitioning. Radiat Environ Biophys. 52(1):29–36. doi:10.1007/s00411-012-0445-6