97
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Modifications of DAMPs levels in extracellular environment induced by aminolevulinic acid-based photodynamic therapy of esophageal cancer cells

, , , &
Pages 802-816 | Received 03 Oct 2023, Accepted 20 Jan 2024, Published online: 06 Feb 2024

References

  • Andersson U, Ottestad W, Tracey KJ. 2020. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med. 26(1):42. doi:10.1186/s10020-020-00172-4
  • Bartusik-Aebisher D, Osuchowski M, Adamczyk M, Stopa J, Cieślar G, Kawczyk-Krupka A, Aebisher D. 2022. Advancements in photodynamic therapy of esophageal cancer. Front Oncol. 12:1024576. doi:10.3389/fonc.2022.1024576
  • Boutilier AJ, Elsawa SF. 2021. Macrophage polarization States in the tumor microenvironment. Int J Mol Sci. 22(13):6995. doi:10.3390/ijms22136995
  • Bundscherer A, Malsy M, Lange R, Hofmann P, Metterlein T, Graf BM, Gruber M. 2013. Cell harvesting method influences results of apoptosis analysis by annexin V staining. Anticancer Res. 33(8):3201–3204.
  • Busch CJ, Binder CJ. 2017. Malondialdehyde epitopes as mediators of sterile inflammation. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids. 1862(4):398–406.
  • Corriden R, Insel PA. 2012. New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal. 8(3):587–598. doi:10.1007/s11302-012-9311-x
  • Čunderlíková B, Kalafutová A, Babál P, Mlkvý P, Teplický T. 2023. Suppression of resistance to aminolevulinic acid-based photodynamic therapy in esophageal cell lines by administration of iron chelators in collagen type I matrices. Int J Radiat Biol. 99(3):474–487. doi:10.1080/09553002.2022.2110310
  • Deng B, Jiang H, Zeng K, Liang Y, Wu Y, Yang Y. 2017. Removal from adherent culture contributes to apoptosis in human bone marrow mesenchymal stem cells. Mol Med Rep. 15(6):3499–3506. doi:10.3892/mmr.2017.6440
  • Dos Santos AF, Inague A, Arini GS, Terra LF, Wailemann RAM, Pimentel AC, Yoshinaga MY, Silva RR, Severino D, de Almeida DRQ, et al. 2020. Distinct photooxidation-induced cell death pathways lead to selective killing of human breast cancer cells. Cell Death Dis. 11(12):1070. doi:10.1038/s41419-020-03275-2
  • Elhassanny A, Escobedo R, Ladin D, Burns C, Van DR. 2020. Damage-associated molecular pattern (DAMP) activation in melanoma: investigation of the immunogenic activity of 15-deoxy, Δ12,14 prostamide J2. Oncotarget. 11(52):4788–4802. doi:10.18632/oncotarget.27856
  • Etminan N, Peters C, Lakbir D, Bünemann E, Börger V, Sabel MC, Hänggi D, Steiger H-J, Stummer W, Sorg RV. 2011. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acid-mediated photodynamic treatment of human glioblastoma spheroids in vitro. Br J Cancer. 105(7):961–969. doi:10.1038/bjc.2011.327
  • Fabian KP, Wolfson B, Hodge JW. 2021. From immunogenic cell death to immunogenic modulation: select chemotherapy regimens induce a spectrum of immune-enhancing activities in the tumor microenvironment. Front Oncol. 11:728018. doi:10.3389/fonc.2021.728018
  • Feuerer N, Morschl J, Daum R, Weiss M, Hinderer S, Schenke-Layland K, Shipp C. 2021. Macrophage retrieval from 3D biomaterials: a detailed comparison of common dissociation methods. J Immun Reg Med. 11:100035. doi:10.1016/j.regen.2020.100035
  • Fumet JD, Limagne E, Thibaudin M, Ghiringhelli F. 2020. Immunogenic cell death and elimination of immunosuppressive cells: a double-edged sword of chemotherapy. Cancers . 12(9):2637. doi:10.3390/cancers12092637
  • Furre IE, Møller MTN, Shahzidi S, Nesland JM, Peng Q. 2006. Involvement of both caspase-dependent and -independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis. 11(11):2031–2042. doi:10.1007/s10495-006-0190-x
  • Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, et al. 2020. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 8(1):e000337. doi:10.1136/jitc-2019-000337
  • Guo M, Lu B, Gan J, Wang S, Jiang X, Li H. 2021. Apoptosis detection: a purpose-dependent approach selection. Cell Cycle. 20(11):1033–1040. doi:10.1080/15384101.2021.1919830
  • Hao Y, Gu Z, Yu Z, Schomann T, Sayedipour S, Aguilar JC, Ten DP, Cruz LJ. 2022. Photodynamic therapy in combination with the Hepatitis B core virus-like particles (HBc VLPs) to prime anticancer immunity for colorectal cancer treatment. Cancers. 14(11):2724. doi:10.3390/cancers14112724
  • He S, Cheng J, Sun L, Wang Y, Wang C, Liu X, Zhang Z, Zhao M, Luo Y, Tian L, et al. 2018. HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis. 9(6):648. doi:10.1038/s41419-018-0626-6
  • Huang J, Xu B, Liu Y, Huang J, Lu P, Ba Y, Wu L, Bai Y, Zhang S, Feng J, et al. 2019. The immune landscape of esophageal cancer. Cancer Commun. 39(1):1–10. doi:10.1186/s40880-019-0359-7
  • Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. 2021. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6(1):153.
  • Jiang H, Fu H, Guo Y, Hu P, Shi J. 2022. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials. 289:121799. doi:10.1016/j.biomaterials.2022.121799
  • Jin Q, Chen H, Luo A, Ding F, Liu Z. 2011. S100A14 stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE). PLoS One. 6(4):e19375. doi:10.1371/journal.pone.0019375
  • Johnson KE, Wulff BC, Oberyszyn TM, Wilgus TA. 2013. Ultraviolet light exposure stimulates HMGB1 release by keratinocytes. Arch Dermatol Res. 305(9):805–815. doi:10.1007/s00403-013-1401-2
  • Kang MWC, Liu H, Kah JCY. 2020. Innate immune activation by conditioned medium of cancer cells following combined phototherapy with photosensitizer-loaded gold nanorods. J Mater Chem B. 8(47):10812–10824. doi:10.1039/d0tb01953d
  • Kessel D. 2019. Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy. Photochem Photobiol. 95(1):119–125. doi:10.1111/php.12952
  • Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin JS. 2020. Immunological significance of HMGB1 post-translational modification and redox biology. Front Immunol. 11:1189. doi:10.3389/fimmu.2020.01189
  • Li Y, Si D, Sabier M, Liu J, Si J, Zhang X. 2023. Guideline for screening antioxidant against lipid-peroxidation by spectrophotometer. eFood. 4(2):e80. doi:10.1002/efd2.80
  • Liu L, Yang M, Kang R, Dai Y, Yu Y, Gao F, Wang H, Sun X, Li X, Li J, et al. 2014. HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE. Biochem Biophys Res Commun. 450(1):851–856. doi:10.1016/j.bbrc.2014.06.074
  • Mandke P, Vasquez KM. 2019. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair. 83:102701. doi:10.1016/j.dnarep.2019.102701
  • McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. 2013. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 110(43):17253–17258. doi:10.1073/pnas.1308887110
  • Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al. 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 167(2):457–470.e13. doi:10.1016/j.cell.2016.08.064
  • Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. 2022. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis. 13(5):455. doi:10.1038/s41419-022-04851-4
  • Panikkanvalappil SR, Hira SM, El-Sayed MA. 2016. Elucidation of ultraviolet radiation-induced cell responses and intracellular biomolecular dynamics in mammalian cells using surface-enhanced Raman spectroscopy. Chem Sci. 7(2):1133–1141. doi:10.1039/c5sc03817k
  • Panzarini E, Inguscio V, Fimia GM, Dini L. 2014. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells. PLOS One. 9(8):e105778. doi:10.1371/journal.pone.0105778
  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. 2011. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 50(2):98–115. doi:10.2144/000113610
  • Pisetsky D. 2011. Cell death in the pathogenesis of immune-mediated diseases: the role of HMGB1 and DAMP-PAMP complexes. Swiss Med Wkly. 141:w13256. doi:10.4414/smw.2011.13256
  • Rodrigues MC, de Sousa Júnior WT, Mundim T, Vale CLC, de Oliveira JV, Ganassin R, Pacheco TJA, Vasconcelos Morais JA, Longo JPF, Azevedo RB, et al. 2022. Induction of immunogenic cell death by photodynamic therapy mediated by aluminum-phthalocyanine in nanoemulsion. Pharmaceutics. 14(1):196. doi:10.3390/pharmaceutics14010196
  • Salo H, Qu H, Mitsiou D, Aucott H, Han J, Zhang X, Aulin C, Erlandsson Harris H. 2021. Disulfide and fully reduced HMGB1 induce different macrophage polarization and migration patterns. Biomolecules. 11(6):800. doi:10.3390/biom11060800
  • Schierbeck H, Wähämaa H, Andersson U, Harris HE. 2010. Immunomodulatory drugs regulate HMGB1 release from activated human monocytes. Mol Med. 16(9–10):343–351. doi:10.2119/molmed.2010.00031
  • Schnurr M, Toy T, Stoitzner P, Cameron P, Shin A, Beecroft T, Davis ID, Cebon J, Maraskovsky E. 2003. ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood. 102(2):613–620. doi:10.1182/blood-2002-12-3745
  • Serbulea V, Upchurch CM, Ahern KW, Bories G, Voigt P, DeWeese DE, Meher AK, Harris TE, Leitinger N. 2018. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol Metab. 7:23–34. doi:10.1016/j.molmet.2017.11.002
  • Shahzidi S, Cunderlíková B, Więdłocha A, Zhen Y, Vasovič V, Nesland JM, Peng Q. 2011. Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochem Photobiol Sci. 10(11):1773–1782. doi:10.1039/c1pp05169e
  • Solari JIG, Filippi-Chiela E, Pilar ES, Nunes V, Gonzalez EA, Figueiró F, Andrade CF, Klamt F. 2020. Damage-associated molecular patterns (DAMPs) related to immunogenic cell death are differentially triggered by clinically relevant chemotherapeutics in lung adenocarcinoma cells. BMC Cancer. 20(1):474. doi:10.1186/s12885-020-06964-5
  • Sun Z, Zhao M, Wang W, Hong L, Wu Z, Luo G, Lu S, Tang Y, Li J, Wang J, et al. 2023. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett. 554:216032. doi:10.1016/j.canlet.2022.216032
  • Teplický T, Kalafutová A, Jerigová M, Čunderlíková B. 2020. Modulation of aminolevulinic acid-based photoinactivation efficacy by iron in vitro is cell type dependent. J Photochem Photobiol B. 213:112048. doi:10.1016/j.jphotobiol.2020.112048
  • van Nieuwenhuijze AE, van LT, Smeenk RJ, Aarden LA. 2003. Time between onset of apoptosis and release of nucleosomes from apoptotic cells: putative implications for systemic lupus erythematosus. Ann Rheum Dis. 62(1):10–14. doi:10.1136/ard.62.1.10
  • Vanmeerbeek I, Govaerts J, Laureano RS, Sprooten J, Naulaerts S, Borras DM, Laoui D, Mazzone M, Van Ginderachter JA, Garg AD. 2022. The interface of tumour-associated macrophages with dying cancer cells in immuno-oncology. Cells. 11(23):3890. doi:10.3390/cells11233890
  • Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, Bojarczuk K, Golab J. 2011. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules. 16(5):4140–4164. doi:10.3390/molecules16054140
  • Wang X, Ji J, Zhang H, Fan Z, Zhang L, Shi L, Zhou F, Chen WR, Wang H, Wang X. 2015. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget. 6(42):44688–44702. doi:10.18632/oncotarget.5975
  • Wang J, Takemura N, Saitoh T. 2021. Macrophage response driven by extracellular ATP. Biol Pharm Bull. 44(5):599–604. doi:10.1248/bpb.b20-00831
  • Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, Vandenabeele P. 2022. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 13(1):3676. doi:10.1038/s41467-022-31218-2
  • Willis WL, Wang L, Wada TT, Gardner M, Abdouni O, Hampton J, Valiente G, Young N, Ardoin S, Agarwal S, et al. 2018. The proinflammatory protein HMGB1 is a substrate of transglutaminase-2 and forms high-molecular weight complexes with autoantigens. J Biol Chem. 293(22):8394–8409. doi:10.1074/jbc.RA117.001078
  • Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. 2020. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B. 10(11):2156–2170. doi:10.1016/j.apsb.2020.04.004
  • Yang H, Wang H, Andersson U. 2020. Targeting inflammation driven by HMGB1. Front Immunol. 11:484. doi:10.3389/fimmu.2020.00484
  • Yu W, Wang X, Zhao J, Liu R, Liu J, Wang Z, Peng J, Wu H, Zhang X, Long Z, et al. 2020. Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Redox Biol. 37:101761. doi:10.1016/j.redox.2020.101761
  • Zhang Y, Zhang Z, Chen L, Zhang X. 2022. Tumor cells-derived conditioned medium induced pro-tumoral phenotypes in macrophages through calcium-nuclear factor κB interaction. BMC Cancer. 22(1):1327. doi:10.1186/s12885-022-10431-8
  • Zhivaki D, Kagan JC. 2022. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat Rev Immunol. 22(5):322–330. doi:10.1038/s41577-021-00618-8
  • Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. 2019. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med. 23(8):4854–4865. doi:10.1111/jcmm.14356
  • Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. 2021. Immunogenic cell death induction by ionizing radiation. Front Immunol. 12:705361. doi:10.3389/fimmu.2021.705361

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.