240
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Production of specialized metabolites in plant cell and organo-cultures: the role of gamma radiation in eliciting secondary metabolism

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 678-688 | Received 17 Sep 2023, Accepted 02 Feb 2024, Published online: 07 Mar 2024

References

  • Almukhtar SA, Alrubaye MA, Elkaaby EA, Kadhim ZK, Alkilabi CK. 2019. Effect of irradiation by gamma rays and the use of benzyl adenine to increase the production of cardiac glycoside compounds form Digitalis lanata in vitro. IOP Conf Ser: Earth Environ Sci. 388(1):012068. doi:10.1088/1755-1315/388/1/012068
  • Aryal B, Raut BK, Bhattarai S, Bhandari S, Tandan P, Gyawali K, Sharma K, Ranabhat D, Thapa R, Aryal D, et al. 2022. Potential therapeutic applications of plant-derived alkaloids against inflammatory and neurodegenerative diseases. Evid Based Complement Alternat Med. 2022:7299778. doi:10.1155/2022/7299778
  • Azeez H, Ibrahim K, Pop R, Pamfil D, Hârţa M, Bobiș O. 2017. Changes induced by gamma-ray irradiation on biomass production and secondary metabolites accumulation in Hypericum triquentrifolium Turra callus cultures. Ind Crops Prod. 108:183–189. doi:10.1016/j.indcrop.2017.06.040
  • Chung BY, Lee YB, Baek MH, Kim JH, Wi SG, Kim JS. 2006. Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S. Radiat Phys Chem. 75(9):1018–1023. doi:10.1016/j.radphyschem.2005.11.001
  • Ciocan A-G, Maximilian C, Mitoi EM, Moldovan R-C, Neguț D, Iuga C-A, Helepciuc FE, Holobiuc I, Radu M, Vassu Dimov T, et al. 2023. The impact of acute low-dose gamma irradiation on biomass accumulation and secondary metabolites production in Cotinus coggygria Scop. And Fragaria × ananassa Duch. red callus cultures. Metabolites. 13(8):894. doi:10.3390/metabo13080894
  • El-Beltagi HS, Ahmed OK, El-Desouky W. 2011. Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary (Rosmarinus officinalis L.) callus cultures. Radiat Phys Chem. 80(9):968–976. doi:10.1016/j.radphyschem.2011.05.002
  • El-Garhy HAS, Khattab S, Moustafa MMA, Ali RA, Azeiz AZA, Elhalwagi A, Sherif FE. 2016. Silybin content and overexpression of chalcone synthase genes in Silybum marianum L. plants under abiotic elicitation. Plant Physiol Biochem. 108:191–202. doi:10.1016/j.plaphy.2016.07.011
  • Esnault MA, Legue F, Chenal C. 2010. Ionizing radiation: Advances in plant response. Environ Exp Bot. 68(3):231–237. doi:10.1016/j.envexpbot.2010.01.007
  • Fulzele DP, Satdive R, Kamble S, Singh S, Singh S. 2015. Improvement of anticancer drug camptothecin production by gamma irradiation on callus cultures of Nothapodytes foetida. Int J Pharm Res Allied Sci. 4:19–27.
  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R. 2016. ROS, calcium, and electric signals: key mediators of rapid systematic signaling in plants. Plant Physiol. 171(3):1606–1615. doi:10.1104/pp.16.00434
  • Goh EJ, Kim JB, Kim WJ, Ha BK, Kim SH, Kang SY, Seo YW, Kim DS. 2014. Physiological changes and anti-oxidative responses of Arabidopsis plants after acute and chronic gamma irradiation. Radiat Environ Biophys. 53(4):677–693. doi:10.1007/s00411-014-0562-5
  • Gudkov SV, Grinberg MA, Sukhov V, Vodeneev V. 2019. Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radioact. 202:8–24. doi:10.1016/j.jenvrad.2019.02.001
  • Hamdani AM, Wani IA, Gani A, Bhat NA, Masoodi FA. 2017. Effect of gamma irradiation on physicochemical, structural and rheological properties of plant exudate gums. Innov Food Sci Emerg Technol. 44:74–82. doi:10.1016/j.ifset.2017.07.014
  • Hefner E, Preuss SB, Britt AB. 2003. Arabidopsis mutants sensitive to gamma radiation include homologue of the reman repair gene ERCC1. J Exp Bot. 54(383):669–680. doi:10.1093/jxb/erg069
  • Hernández-Muñoz S, Pedraza-Santos ME, Antonio López P, Gómez-Sanabria JM, Morales-García JL. 2019. Mutagenesis in the improvement of ornamental plants. rchsh. 25(3):151–167. doi:10.5154/r.rchsh.2018.12.022
  • Ho JHC, Hong CY. 2011. Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J Biomed Sci. 18(1):30. doi:10.1186/1423-0127-18-30
  • Huang XQ, Dudareva N. 2023. Plant specialized metabolism. Curr Biol. 33(11):R473–R478. doi:10.1016/j.cub.2023.01.057
  • Jan, Sumira, Parween, Talat, Siddiqi, T.O., Mahmooduzzafar,. 2012. Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products.Environ. Rev., 1. 20: 17–39. doi:10.1139/a11-021
  • Jaisi A, Sakunphueak A, Panichayupakaranant P. 2013. Increased production of plumbagin in Plumbao indica root cultures by gamma ray irradiation. Pharm Biol. 51(8):1047–1051. doi:10.3109/13880209.2013.775163
  • Katiyar P, Pandey N, Keshavkant S. 2022. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress. 5:100089. doi:10.1016/j.stress.2022.100089
  • Khalifa AM, Abd-Elshafy E, Abu-Khudir R, Gaafar RM. 2022. Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.). J Genet Eng Biotechnol. 20(1):166. doi:10.1186/s43141-022-00424-2
  • Kim DS, Song M, Kim SH, Jang DS, Kim JB, Ha BK, Kim SH, Lee KJ, Kang SY, Jeong IY. 2013. The improvement of ginsenoside accumulation in Panax ginseng as a result of γ-irradiation. J Ginseng Res. 37(3):332–340. doi:10.5142/jgr.2013.37.332
  • Kim DS, Kim JB, Goh EJ, Kim WJ, Kim SH, Seo YW, Jang CS, Kang SY. 2011. Antioxidant response to Arabidopsis plant to gamma irradiation: genome-wide expression profiling of the ROS scavenging and signal transduction pathways. J Plant Physiol. 168(16):1960–1971. doi:10.1016/j.jplph.2011.05.008
  • Kim DS, Kim SY, Jeong IY, Kim JB, Lee GJ, Kang SY, Kim W. 2009. Improvement of ginsenoside production by Panax ginseng adventitious roots induced by γ-irradiation. Biologia Plant. 53(3):408–414. doi:10.1007/s10535-009-0079-y
  • Kim JH, Lee MH, Moon YR, Kim JS, Wi SG, Kim TH, Chung BY. 2009. Characterization of metabolic disturbances closely linked to the delayed senescence of Arabidopsis leaves after gamma-irradiation. Environ Exp Bot. 67(2):363–371. doi:10.1016/j.envexpbot.2009.07.001
  • Lal RK, Chanotiya CS, Gupta P. 2020. Induced mutation breeding for qualitative and quantitative traits and varietal development in medicinal and aromatic crops at CSIR-CIMAP, Lucknow (India): Past and recent accomplishment. Int J Radiat Biol. 96(12):1513–1527. doi:10.1080/09553002.2020.1834161
  • Le KC, Ho TT, Paek KY, Park SY. 2019. Low-dose gamma radiation increases the biomass and ginsenoside content of callus and adventitious root cultures of wild ginseng (Panax ginseng Mayer). Ind Crops Prod. 130:16–24. doi:10.1016/j.indcrop.2018.12.056
  • Lee H, Kong G, Tran Q, Kim C, Park J, Park J. 2020. Relationship between ginsenoside Rg3 and metabolic syndrome. Front Pharmacol. 11:130. doi:10.3389/fphar.2020.00130
  • Mariadoss A, Satdive R, Fulzele DP, Ramamoorthy S, Doss GPC, Zayed H, Younes S, Rajasekaran C. 2020. Enhanced production of anthraquinones by gamma-irradiated cell cultures of Rubia cordifolia in a bioreactor. Ind Crops Prod. 145:111987. doi:10.1016/j.indcrop.2019.111987
  • Misra HO, Sharma JR, Lal RK. 1991. Radiation induced cytomorphological changes in Hyocyamus muticus L. cytologia. 56(4):527–531. doi:10.1508/cytologia.56.527
  • Mittler R. 2017. ROS Are good. Trends Plant Sci. 22(1):11–19. doi:10.1016/j.tplants.2016.08.002
  • Moghaddam SS, Jaafar H, Ibrahim R, Rahmat A, Aziz MA, Philip E. 2011. Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules. 16(6):4994–5007. doi:10.3390/molecules16064994
  • Mohamed AA. 2009. Effect of low dose gamma irradiation on some phytochemicals and scavenger ability of in vitro Culantro (Eryngium foetidum L.) plantlets. Med Aromat Plant Sci Biotechnol. 3:32–36.
  • Mujib A, Fatima S, Malik MQ. 2022. Gamma ray-induced tissue responses and improved secondary metabolites accumulation in Catharanthus roseus. Appl Microbiol Biotechnol. 106(18):6109–6123. doi:10.1007/s00253-022-12122-7
  • Murthy HN, Joseph KS, Paek KY, Park SY. 2023a. Bioreactor systems for micropropagation of plants: present scenario and future prospects. Front Plant Sci. 14:1159588. doi:10.3389/fpls.2023.1159588
  • Murthy HN, Joseph KS, Paek KY, Park SY. 2023b. Production of anthraquinones from cell and organ cultures of Morinda species. Appl Microbiol Biotechnol. 107(7-8):2061–2071. doi:10.1007/s00253-023-12440-4
  • Murthy HN, Joseph KS, Paek KY, Park SY. 2023c. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Crit Rev Biotechnol. 27:1–23. doi:10.1080/07388551.2023.2233690
  • Murthy HN, Joseph KS, Paek KY, Park SY. 2023d. Nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites in cell and organ cultures: current status and future outlooks. Plant Growth Regul. doi:10.1007/s10725-023-01086-x
  • Murthy HN, Joseph KS, Hahn JE, Lee HS, Paek KY, Park SY. 2023e. Suspension culture of somatic embryos for the production of high-value secondary metabolites. Physiol Mol Biol Plants. 29(8):1153–1177. doi:10.1007/s12298-023-01365-x
  • Murthy HN, Joseph KS, Paek KY, Park SY. 2022. Anthraquinone production from cell and organ cultures of Rubia species: an overview. Metabolites. 13(1):39. doi:10.3390/metabo13010039
  • Murthy HN, Dandin VS, Paek KY. 2016. Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev. 15(1):129–145. doi:10.1007/s11101-014-9391-z
  • Murthy HN, Lee EJ, Paek KY. 2014. Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult. 118(1):1–16. doi:10.1007/s11240-014-0467-7
  • Narayani M, Srivastava S. 2017. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev. 16(6):1227–1252. doi:10.1007/s11101-017-9534-0
  • Ognyanov M, Denev P, Teneva D, Georgiev Y, Taneva S, Totseva I, Kamenova-Nacheva M, Nikolova Y, Momchilova S. 2022. Influence of gamma irradiation on different phytochemical constituents of dried rose hip (Rosa canina L.) fruits. Molecules. 27(6):1765. doi:10.3390/molecules27061765
  • Qi W, Zhang L, Feng W, Xu H, Wang L, Jiao Z. 2015. ROS and ABA signaling are involved in the growth stimulation induced by low-dose gamma radiation in Arabidopsis seedling. Appl Biochem Biotechnol. 175(3):1490–1506. doi:10.1007/s12010-014-1372-6
  • Radomir A-M, Temelie M, Moldovan R-C, Stoica R, Petrache A-M, Helepciuc F-E, Savu DI, Iuga C-A, Moroșanu A-M, Neguț CD, et al. 2023. Effect of gamma irradiation on phenolic content, biological activity, and cellular ultrastructure of Salvia officinalis L. cultured in vitro. Plant Cell Tiss Organ Cult. 154(1):141–160. doi:10.1007/s11240-023-02522-6
  • Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó RM, Palazon J. 2016. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules. 21(2):182. doi:10.3390/molecules21020182
  • Ratan ZA, Haidere MF, Hong YH, Park SH, Lee JO, Lee J, Cho JY. 2021. Pharmacological potential of ginseng and its major component ginsenosides. J Ginseng Res. 45(2):199–210. doi:10.1016/j.jgr.2020.02.004
  • Reshi ZA, Ahmad W, Lukatkin AS, Javed SB. 2023. From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches. Metabolites. 13(8):895. doi:10.3390/metabo13080895
  • Riviello-Flores MdlL, Cadena-Iñiguez J, Ruiz-Posadas LDM, Arévalo-Galarza MdL, Castillo-Juárez I, Soto Hernández M, Castillo-Martínez CR. 2022. Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants (Basel). 11(9):1161. doi:10.3390/plants11091161
  • Sewelam N, Kazan K, Schenk PM. 2016. Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci. 7:187. doi:10.3389/fpls.2016.00187
  • Taiz L, Zeiger E, Moller IM, Murphy A. 2015. Plant physiology and development. Sinauer Associates, Inc. Sunderland, MA, USA.
  • Vanhoudt N, Horemans N, Wannijn J, Nauts R, Hees MV, Vandenhove H. 2014. Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. J Environ Radioact. 129:1–6. doi:10.1016/j.jenvrad.2013.11.011
  • Vardhan PV, Shukla LI. 2017. Gamma irradiation of medicinally important plant and the enactment of secondary metabolite production. Int J Radiat Biol. 93(9):967–979. doi:10.1080/09553002.2017.1344788
  • Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant singling. Annu Rev Plant Biol. 69(1):209–236. doi:10.1146/annurev-arplant-042817-040322
  • Wi SG, Chung BY, Kim JH, Baek MH, Yang DH, Lee JW, Kim JS. 2005. Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. J Plant Biol. 48(2):195–200. doi:10.1007/BF03030408
  • Zaka R, Chenal C, Misset MT. 2002. Study of external low irradiation does effects on induction of chromosome aberrations in Psium sativum root tip meristem. Mutat Res. 517(1-2):87–99. doi:10.1016/S1383-5718(02)00056-6
  • Zhang JY, Bae TW, Boo KH, Sun HJ, Song IJ, Pham CH, Ganesan M, Yang DH, Kang HG, Ko SM, et al. 2011. Ginsenoside production and morphological characterization of wild ginseng (Panax ginseng Meyer) mutant lines induced by γ-irradiation (60Co) of adventitious roots. J Ginseng Res. 35(3):283–293. doi:10.5142/jgr.2011.35.3.283
  • Zhao J, Davis LC, Verpoorte R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 23(4):283–333. doi:10.1016/j.biotechadv.2005.01.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.