435
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Kaplan lecture 2023: lymphopenia in particle therapy

ORCID Icon
Pages 669-677 | Received 10 Jan 2024, Accepted 02 Feb 2024, Published online: 05 Mar 2024

References

  • [IAEA] International Atomic Energy Agency. 2011. Cytogenetic dosimetry : applications in preparedness for and response to radiation emergencies. Manual Series. Vienna: International Atomic Energy Agency.
  • Abuodeh Y, Venkat P, Kim S. 2016. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 40(1):25–37. doi:10.1016/j.currproblcancer.2015.10.001
  • Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al. 2018. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 379(24):2342–2350. doi:10.1056/NEJMoa1809697
  • Barendsen GW. 1979. Influence of radiation quality on the effectiveness of small doses for induction of reproductive death and chromosome aberrations in mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 36(1):49–63. doi:10.1080/09553007914550811
  • Bedford JS, Mitchell JB, Griggs HG, Bender MA. 1978. Radiation-induced cellular reproductive death and chromosome aberrations. Radiat Res. 76(3):573–586.
  • Boustani J, Grapin M, Laurent P-A, Apetoh L, Mirjolet C. 2019. The 6th R of radiobiology: reactivation of anti-tumor immune response. Cancers (Basel). 11(6):860. doi:10.3390/cancers11060860
  • Campbell AC, Hersey P, MacLennan ICM, Kay HEM, Pike MC. 1973. Immunosuppressive consequences of radiotherapy and chemotherapy in patients with acute lymphoblastic leukaemia. Br Med J. 2(5863):385–388. doi:10.1136/bmj.2.5863.385
  • Cavalieri S, Vitolo V, Barcellini A, Ronchi S, Facoetti A, Campo C, Klersy C, Molinelli S, Agustoni F, Ferretti VV, et al. 2023. Immune checkpoint inhibitors and Carbon iON radiotherapy in solid Cancers with stable disease (ICONIC). Future Oncol. 19(3):193–203. doi:10.2217/fon-2022-0503
  • Cella L, Monti S, Pacelli R, Palma G. 2024. Modeling frameworks for radiation induced lymphopenia: a critical review. Radiother Oncol. 190:110041. doi:10.1016/j.radonc.2023.110041
  • Chamoto K, Yaguchi T, Tajima M, Honjo T. 2023. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol. 23(10):682–695. doi:10.1038/s41577-023-00867-9
  • Chang JY, Lin SH, Dong W, Liao Z, Gandhi SJ, Gay CM, Zhang J, Chun SG, Elamin YY, Fossella FV, et al. 2023. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet. 402(10405):871–881. doi:10.1016/S0140-6736(23)01384-3
  • Chen D, Verma V, Patel RR, Barsoumian HB, Cortez MA, Welsh JW. 2020. Absolute lymphocyte count predicts abscopal responses and outcomes in patients receiving combined immunotherapy and radiation therapy: analysis of 3 phase 1/2 trials. Int J Radiat Oncol Biol Phys. 108(1):196–203. doi:10.1016/j.ijrobp.2020.01.032
  • Cho Y, Kim Y, Chamseddine I, Lee WH, Kim HR, Lee IJ, Hong MH, Cho BC, Lee CG, Cho S, et al. 2022. Lymphocyte dynamics during and after chemo-radiation correlate to dose and outcome in stage III NSCLC patients undergoing maintenance immunotherapy. Radiother Oncol. 168:1–7. doi:10.1016/j.radonc.2022.01.007
  • Cornforth MN, Bedford JS. 1993. Ionizing radiation damage and its early development in chromosomes. Adv Radiat Biol. 17:423–496. doi:10.1016/B978-0-12-035417-7.50010-6
  • Cortiula F, Hendriks LEL, Wijsman R, Houben R, Steens M, Debakker S, Canters R, Trovò M, Sijtsema NM, Niezink AGH, et al. 2024. Proton and photon radiotherapy in stage III NSCLC: Effects on hematological toxicity and adjuvant immune therapy. Radiother Oncol. 190:110019. doi:10.1016/j.radonc.2023.110019
  • d’Alesio V, Pacelli R, Durante M, Canale Cama G, Cella L, Gialanella G, Grossi G, Pugliese M, Punzo G, Sardi I, et al. 2003. Lymph nodes in the irradiated field influence the yield of radiation-induced chromosomal aberrations in lymphocytes from breast cancer patients. Int J Radiat Oncol Biol Phys. 57(3):732–738., doi:10.1016/S0360-3016(03)00664-3
  • Dai D, Tian Q, Yu G, Shui Y, Jiang H, Wei Q. 2022. Severe radiation-induced lymphopenia affects the outcomes of esophageal cancer: a comprehensive systematic review and meta-analysis. Cancers (Basel). 14(12):3024. doi:10.3390/cancers14123024
  • Damen PJJ, Kroese TE, van Hillegersberg R, Schuit E, Peters M, Verhoeff JJC, Lin SH, van Rossum PSN. 2021. The influence of severe radiation-induced lymphopenia on overall survival in solid tumors: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 111(4):936–948. doi:10.1016/j.ijrobp.2021.07.1695
  • De B, Ng SP, Liu AY, Avila S, Tao R, Holliday EB, Brownlee Z, Kaseb A, Lee S, Raghav K, et al. 2021. Radiation-associated lymphopenia and outcomes of patients with unresectable hepatocellular carcinoma treated with radiotherapy. J Hepatocell Carcinoma. 8:57–69. doi:10.2147/JHC.S282062
  • de Kermenguy F, Meziani L, Mondini M, Clémenson C, Morel D, Deutsch E, Robert C. 2023. Radio-induced lymphopenia in the era of anti-cancer immunotherapy. Int Rev Cell Mol Biol. 378:1–30. doi:10.1016/bs.ircmb.2023.03.002
  • Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC. 2004. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 58(3):862–870. doi:10.1016/j.ijrobp.2003.09.012
  • Dewey WC, Miller HH, Leeper DB. 1971. Chromosomal aberrations and mortality of x-irradiated mammalian cells: emphasis on repair. Proc Natl Acad Sci U S A. 68(3):667–671. doi:10.1073/pnas.68.3.667
  • Di Giorgio M, Edwards AA, Moquet JE, Finnon P, Hone PA, Lloyd DC, Kreiner AJ, Schuff JA, Taja MR, Vallerga MB, et al. 2004. Chromosome aberrations induced in human lymphocytes by heavy charged particles in track segment mode. Radiat Prot Dosimetry. 108(1):47–53. doi:10.1093/rpd/nch012
  • Durante M. 2005. Biomarkers of space radiation risk. Radiat Res. 164(4 Pt 2):467–473. doi:10.1667/rr3359.1
  • Durante M, Bedford JS, Chen DJ, Conrad S, Cornforth MN, Natarajan AT, van Gent DC, Obe G. 2013. From DNA damage to chromosome aberrations: Joining the break. Mutat Res. 756(1-2):5–13. doi:10.1016/j.mrgentox.2013.05.014
  • Durante M, Bonassi S, George K, Cucinotta FA. 2001. Risk estimation based on chromosomal aberrations induced by radiation. Radiat Res. 156(5 Pt 2):662–667. doi:10.1667/0033-7587(2001)156[0662:reboca[PMC]2.0.co;2]
  • Durante M, Brenner DJ, Formenti SC. 2016. Does heavy ion therapy work through the immune system? Int J Radiat Oncol Biol Phys. 96(5):934–936. doi:10.1016/j.ijrobp.2016.08.037
  • Durante M, Cucinotta FA. 2008. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer. 8(6):465–472. doi:10.1038/nrc2391
  • Durante M, Debus J, Loeffler JS. 2021. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nat Rev Phys. 3(12):777–790. doi:10.1038/s42254-021-00368-5
  • Durante M, Formenti S. 2020. Harnessing radiation to improve immunotherapy: better with particles? Br J Radiol. 93(1107):20190224. doi:10.1259/bjr.20190224
  • Durante M, Furusawa Y, Gotoh E. 1998. A simple method for simultaneous interphase-metaphase chromosome analysis in biodosimetry. Int J Radiat Biol. 74(4):457–462. doi:10.1080/095530098141320
  • Durante M, Golubev A, Park W-Y, Trautmann C. 2019. Applied nuclear physics at the new high-energy particle accelerator facilities. Phys Rep. 800:1–37. doi:10.1016/j.physrep.2019.01.004
  • Durante M, Paganetti H. 2016. Nuclear physics in particle therapy : a review. Rep Prog Phys. 79(9):096702. doi:10.1088/0034-4885/79/9/096702
  • Durante M, Yamada S, Ando K, Furusawa Y, Kawata T, Majima H, Nakano T, Tsujii H. 2000. X-rays vs. carbon-ion tumor therapy: cytogenetic damage in lymphocytes. Int J Radiat Oncol Biol Phys. 47(3):793–798. doi:10.1016/S0360-3016(00)00455-7
  • Durante M, Yamada S, Ando K, Furusawa Y, Kawata T, Majima H, Nakano T, Tsujii H. 1999. Measurements of the equivalent whole-body dose during radiation therapy by cytogenetic methods. Phys Med Biol. 44(5):1289–1298. doi:10.1088/0031-9155/44/5/314
  • El Houat Y, Massard C, Quillien V, de Crevoisier R, Castelli J. 2023. Meta-analysis and critical review: association between radio-induced lymphopenia and overall survival in solid cancers. Adv Radiat Oncol. 8(2):101038. doi:10.1016/j.adro.2022.101038
  • Formenti SC, Demaria S. 2013. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 105(4):256–265. doi:10.1093/jnci/djs629
  • Formenti SC, Demaria S. 2009. Systemic effects of local radiotherapy. Lancet Oncol. 10(7):718–726. doi:10.1016/S1470-2045(09)70082-8
  • Friedes C, Iocolano M, Lee SH, Duan L, Li B, Doucette A, Cohen RB, Aggarwal C, Sun LL, Levin WP, et al. 2024. The effective radiation dose to immune cells predicts lymphopenia and inferior cancer control in locally advanced NSCLC. Radiother Oncol. 190:110030. doi:10.1016/j.radonc.2023.110030
  • Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. 2023. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol. 20(8):543–557. doi:10.1038/s41571-023-00782-x
  • George K, Durante M, Willingham V, Wu H, Yang TC, Cucinotta F. a 2003. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat Res. 160(4):425–435. doi:10.1667/RR3064
  • Gotoh E, Durante M. 2006. Chromosome condensation outside of mitosis: mechanisms and new tools. J Cell Physiol. 209(2):297–304. doi:10.1002/jcp.20720
  • Harrison JD, Balonov M, Bochud F, Martin C, Menzel H-G, Ortiz-Lopez P, Smith-Bindman R, Simmonds JR, Wakeford R. 2021. ICRP publication 147: use of dose quantities in radiological protection. Ann ICRP. 50(1):9–82. doi:10.1177/0146645320911864
  • Hartel C, Nikoghosyan A, Durante M, Sommer S, Nasonova E, Fournier C, Lee R, Debus J, Schulz-Ertner D, Ritter S. 2010. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions. Radiother Oncol. 95(1):73–78. doi:10.1016/j.radonc.2009.08.031
  • Helm A, Fournier C, Durante M. 2022. Particle radiotherapy and molecular therapies: mechanisms and strategies towards clinical applications. Expert Rev Mol Med. 24:e8. doi:10.1017/erm.2022.2
  • Helm A, Totis C, Durante M, Fournier C. 2023. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. Int Rev Cell Mol Biol. 376:1–36. doi:10.1016/bs.ircmb.2023.01.001
  • Hsieh RC-E, Lee C-H, Huang H-C, Wu S-W, Chou C-Y, Hung S-P, Lee C-W, Krishnan S, Venkatesulu BP, Lee J-C, et al. 2023. Clinical and dosimetric results of proton or photon radiation therapy for large (>5 cm) hepatocellular carcinoma: a retrospective analysis. Int J Radiat Oncol. doi:10.1016/j.ijrobp.2023.09.049
  • Iorio GC, Spieler BO, Ricardi U, Dal Pra A. 2021. The impact of pelvic nodal radiotherapy on hematologic toxicity: a systematic review with focus on leukopenia, lymphopenia and future perspectives in prostate cancer treatment. Crit Rev Oncol Hematol. 168:103497. doi:10.1016/j.critrevonc.2021.103497
  • Kamada T, Tsujii H, Blakely EA, Debus J, De Neve W, Durante M, Jäkel O, Mayer R, Orecchia R, Pötter R, et al. 2015. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 16(2):e93–e100. doi:10.1016/S1470-2045(14)70412-7
  • Kawashiro S, Yamada S, Okamoto M, Ohno T, Nakano T, Shinoto M, Shioyama Y, Nemoto K, Isozaki Y, Tsuji H, et al. 2018. Multi-institutional STUDY OF CARBON-ION RADIOTHERAPY FOR LOCALLY ADVANCED PANCREATIC CANCEr: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 pancreas. Int J Radiat Oncol Biol Phys. 101(5):1212–1221. doi:10.1016/j.ijrobp.2018.04.057
  • Kelly RJ, Ajani JA, Kuzdzal J, Zander T, Van Cutsem E, Piessen G, Mendez G, Feliciano J, Motoyama S, Lièvre A, et al. 2021. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N Engl J Med. 384(13):1191–1203. doi:10.1056/NEJMoa2032125
  • Kim H, Park S, Jung HA, Lee S-H, Park K, Ahn YC, Oh D, Ahn M-J. 2023. Phase II trial of combined durvalumab plus tremelimumab with proton therapy for recurrent or metastatic head and neck squamous cell carcinoma. Cancer Res Treat. 55(4):1104–1112. doi:10.4143/crt.2023.502
  • Kim N, Myoung Noh J, Lee W, Park B, Park H, Young Park J, Pyo H. 2021. Proton beam therapy reduces the risk of severe radiation-induced lymphopenia during chemoradiotherapy for locally advanced non-small cell lung cancer: a comparative analysis of proton versus photon therapy. Radiother Oncol. 156:166–173. doi:10.1016/j.radonc.2020.12.019
  • Kim S, Byun HK, Shin J, Lee IJ, Sung W. 2023. Normal tissue complication probability modeling of severe radiation-induced lymphopenia using blood dose for hepatocellular carcinoma patients. Int J Radiat Oncol. 89:100889. doi:10.1016/j.ijrobp.2023.11.060
  • Kim Y, Chamseddine I, Cho Y, Kim JS, Mohan R, Shusharina N, Paganetti H, Lin S, Yoon HI, Cho S, et al. 2023. Neural network based ensemble model to predict radiation induced lymphopenia after concurrent chemo-radiotherapy for non-small cell lung cancer from two institutions. Neoplasia. 39:100889. doi:10.1016/j.neo.2023.100889
  • Kirkwood JM, Butterfield LH, Tarhini A. a, Zarour H, Kalinski P, Ferrone S. 2012. Immunotherapy of cancer in 2012. CA Cancer J Clin. 62(5):309–335. doi:10.3322/caac.20132
  • Lee NY, Ferris RL, Psyrri A, Haddad RI, Tahara M, Bourhis J, Harrington K, Chang PM-H, Lin J-C, Razaq MA, et al. 2021. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 22(4):450–462. doi:10.1016/S1470-2045(20)30737-3
  • Lee R, Yamada S, Yamamoto N, Miyamoto T, Ando K, Durante M, Tsujii H. 2004. Chromosomal aberrations in lymphocytes of lung cancer patients treated with carbon ions. J Radiat Res. 45(2):195–199. doi:10.1269/jrr.45.195
  • Li Y, Fan X, Yu Q, Zhai H, Mo M, Sun J, Mi J, Lu R, Mao J, Chen J, et al. 2023. Proton and carbon ion radiation therapy decreased severe lymphopenia by reducing thoracic vertebra and aortic doses in non-small cell lung cancer versus intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 116(3):579–589. doi:10.1016/j.ijrobp.2022.12.030
  • Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, Ansstas G, Baehring J, Taylor JW, Honnorat J, et al. 2022. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 24(11):1935–1949. doi:10.1093/neuonc/noac116
  • Mohan R, Liu AY, Brown PD, Mahajan A, Dinh J, Chung C, McAvoy S, McAleer MF, Lin SH, Li J, et al. 2020. Proton therapy reduces the likelihood of high-grade radiation–induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons. Neuro Oncol. 23(2):284–294. doi:10.1093/neuonc/noaa182
  • Nikoghosyan AV, Schulz-Ertner D, Herfarth K, Didinger B, Münter MW, Jensen AD, Jäkel O, Hoess A, Haberer T, Debus J. 2011. Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer – acute toxicity of 12C for PC. Acta Oncol. 50(6):784–790. doi:10.3109/0284186X.2011.584558
  • Noda K, Furukawa T, Fujimoto T, Hara Y, Inaniwa T, Iwata Y, Katagiri K, Kanematsu N, Mizushima K, Mori S, et al. 2017. Recent progress and future plans of heavy-ion cancer radiotherapy with HIMAC. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 406:374–378. doi:10.1016/j.nimb.2017.04.021
  • Pignalosa D, Lee R, Hartel C, Sommer S, Nikoghosyan A, Debus J, Ritter S, Durante M. 2013. Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions. Radiother Oncol. 109(2):256–261. doi:10.1016/j.radonc.2013.09.021
  • Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, et al. 2012. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 366(10):925–931. doi:10.1056/NEJMoa1112824
  • Rajeev-Kumar G, Pitroda SP. 2023. Synergizing radiotherapy and immunotherapy: current challenges and strategies for optimization. Neoplasia. 36:100867. doi:10.1016/j.neo.2022.100867
  • Ritter S, Nasonova E, Gudowska-Nowak E, Scholz M, Kraft G. 2002. Integrated chromosome aberration yields determined for V79 cells after high LET radiation. Int J Radiat Biol. 78(11):1063–1064. doi:10.1080/0955300021000020292
  • Routman DM, Garant A, Lester SC, Day CN, Harmsen WS, Sanheuza CT, Yoon HH, Neben-Wittich MA, Martenson JA, Haddock MG, et al. 2019. A comparison of grade 4 lymphopenia with proton versus photon radiation therapy for esophageal cancer. Adv Radiat Oncol. 4(1):63–69. doi:10.1016/j.adro.2018.09.004
  • Schoenfeld JD, Giobbie-Hurder A, Ranasinghe S, Kao KZ, Lako A, Tsuji J, Liu Y, Brennick RC, Gentzler RD, Lee C, et al. 2022. Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 23(2):279–291. doi:10.1016/S1470-2045(21)00658-6
  • Sender R, Weiss Y, Navon Y, Milo I, Azulay N, Keren L, Fuchs S, Ben-Zvi D, Noor E, Milo R. 2023. The total mass, number, and distribution of immune cells in the human body. Proc Natl Acad Sci USA. 120(44):e2308511120. doi:10.1073/pnas.2308511120
  • Sharma P, Allison JP. 2015. The future of immune checkpoint therapy. Science. 348(6230):56–61. doi:10.1126/science.aaa8172
  • Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant KL, et al. 2023. Immune checkpoint therapy—current perspectives and future directions. Cell. 186(8):1652–1669. doi:10.1016/j.cell.2023.03.006
  • Sherry AD, von Eyben R, Newman NB, Gutkin P, Mayer I, Horst K, Chakravarthy AB, Rafat M. 2020. Systemic inflammation after radiation predicts locoregional recurrence, progression, and mortality in stage II–III triple-negative breast cancer. Int J Radiat Oncol Biol Phys. 108(1):268–276. doi:10.1016/j.ijrobp.2019.11.398
  • Shiraishi Y, Fang P, Xu C, Song J, Krishnan S, Koay EJ, Mehran RJ, Hofstetter WL, Blum-Murphy M, Ajani JA, et al. 2018. Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: a propensity matched analysis of the relative risk of proton versus photon-based radiation therapy. Radiother Oncol. 128(1):154–160. doi:10.1016/j.radonc.2017.11.028
  • Spigel DR, Faivre-Finn C, Gray JE, Vicente D, Planchard D, Paz-Ares L, Vansteenkiste JF, Garassino MC, Hui R, Quantin X, et al. 2022. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. J Clin Oncol. 40(12):1301–1311. doi:10.1200/JCO.21.01308
  • Stjernswärd J, Vánky F, Jondal M, Wigzell H, Sealy R. 1972. Lymphopenia and change in distribution of human B and T lymphocytes in peripheral blood induced by irradiation of mammary carcinoma. Lancet. 1(7765):1352–1356. doi:10.1016/S0140-6736(72)91091-4
  • Sumiya T, Ishikawa H, Hiroshima Y, Nakamura M, Murakami M, Mizumoto M, Okumura T, Sakurai H. 2021. The impact of lymphopenia during chemoradiotherapy using photons or protons on the clinical outcomes of esophageal cancer patients. J Radiat Res. 62:1045–1055. doi:10.1093/jrr/rrab094
  • Takanen S, Bottero M, Nisticò P, Sanguineti G. 2022. A systematic review on the impact of hypofractionated and stereotactic radiotherapy on immune cell subpopulations in cancer patients. Cancers (Basel). 14(21):5190. doi:10.3390/cancers14215190
  • Takeda K, Umezawa R, Yamamoto T, Takahashi N, Suzuki Y, Kishida K, Omata S, Jingu K. 2023. Acute hematologic toxicity of radiation therapy – a comprehensive analysis and predictive nomogram. J Radiat Res. 64(6):954–961. doi:10.1093/jrr/rrad069
  • Tao Y, Biau J, Sun XS, Sire C, Martin L, Alfonsi M, Prevost JB, Modesto A, Lafond C, Tourani JM, et al. 2023. Pembrolizumab versus cetuximab concurrent with radiotherapy in patients with locally advanced squamous cell carcinoma of head and neck unfit for cisplatin (GORTEC 2015-01 PembroRad): a multicenter, randomized, phase II trial. Ann Oncol. 34(1):101–110. doi:10.1016/j.annonc.2022.10.006
  • Terrones-Campos C, Ledergerber B, Vogelius IR, Helleberg M, Specht L, Lundgren J. 2021. Hematological toxicity in patients with solid malignant tumors treated with radiation – Temporal analysis, dose response and impact on survival. Radiother Oncol. 158:175–183. doi:10.1016/j.radonc.2021.02.029
  • Upadhaya S, Neftelinov ST, Hodge J, Campbell J. 2022. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat Rev Drug Discov. 21(7):482–483. doi:10.1038/d41573-022-00030-4
  • van Rossum PSN, Juan-Cruz C, Stam B, Rossi MMG, Lin SH, Abravan A, Belderbos JSA, Sonke J-J. 2023. Severe radiation-induced lymphopenia during concurrent chemoradiotherapy for stage III non-small cell lung cancer: external validation of two prediction models. Front Oncol. 13:1278723. doi:10.3389/fonc.2023.1278723
  • Venkatesulu B, Giridhar P, Pujari L, Chou B, Lee JH, Block AM, Upadhyay R, Welsh JS, Harkenrider MM, Krishnan S, et al. 2022. Lymphocyte sparing normal tissue effects in the clinic (LymphoTEC): a systematic review of dose constraint considerations to mitigate radiation-related lymphopenia in the era of immunotherapy. Radiother Oncol. 177:81–94. doi:10.1016/j.radonc.2022.10.019
  • Wang X, van Rossum PSN, Chu Y, Hobbs BP, Grassberger C, Hong TS, Liao Z, Yang J, Zhang X, Netherton T, et al. 2023. Severe lymphopenia during chemoradiation therapy for esophageal cancer: comprehensive analysis of randomized phase 2B trial of proton beam therapy versus intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 118(2):368–377. doi:10.1016/j.ijrobp.2023.08.058
  • Wu H, Durante M, George K, Yang TC. 1997. Induction of chromosome aberrations in human cells by charged particles. Radiat Res. 148(5 Suppl):S102–S7.
  • Yamada S, Durante M, Ando K, Furusawa Y, Kawata T, Majima H, Tsujii H. 2000. Complex-type chromosomal exchanges in blood lymphocytes during radiation therapy correlate with acute toxicity. Cancer Lett. 150(2):215–221. doi:10.1016/S0304-3835(99)00405-X
  • Yang G, Yoon HI, Lee J, Kim J, Kim H, Cho J, Lee CG, Chang JS, Cho Y, Kim JS, et al. 2023. Risk of on-treatment lymphopenia is associated with treatment outcome and efficacy of consolidation immunotherapy in patients with non-small cell lung cancer treated with concurrent chemoradiotherapy. Radiother Oncol. 189:109934. doi:10.1016/j.radonc.2023.109934
  • Yang TC, George K, Johnson AS, Durante M, Fedorenko BS. 1997. Biodosimetry results from space flight Mir-18. Radiat Res. 148(5 Suppl):S17–S23.
  • Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. 2013. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 31(2):140–144. doi:10.3109/07357907.2012.762780
  • Zhang Y, Huang C, Li S. 2023. Influence of treatment-related lymphopenia on the efficacy of immune checkpoint inhibitors in lung cancer: a meta-analysis. Front Oncol. 13:1287555. doi:10.3389/fonc.2023.1287555

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.