13
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Mutations induced in some Egyptian cowpea varieties with yield characteristics and high nutritional value using gamma rays and evaluation by microsatellite markers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1117-1125 | Received 27 Nov 2023, Accepted 13 Jun 2024, Published online: 11 Jul 2024

References

  • Adetunji CO, Fawole OB, Oloke JK, Adetunji JB, Makanjuola OR. 2016. Effect of gamma irradiation on some antinutritional factors and protein quality of cowpea seeds (Vigna unguiculata L. Walp). J Food Process Preserv. 40(6):1142–1150.
  • Ahmed TA, El-Shazly HH, El-Orabey WM, Walaa M, Hassan A, Hanan HA. 2020. Genetic diversity analysis of gamma ray-induced cowpea mutants using SSR markers. J Genet Eng Biotechnol. 18(1):59.
  • Anderson JA, Ogihara Y, Sorrells ME, Tanksley SD. 1992. Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet. 83(8):1035–1043. doi:10.1007/BF00232969
  • AOAC. 1990. Official methods of analysis. 15th ed. Arlington (VA): Association of Official Analytical Chemists Inc.; p. 1094.
  • Atchaya U, Sankari A, Kalaiyarasi R, Savitha BK, Vanitha K, Thanga Hemavathy A. 2023. Effect of gamma irradiation on growth parameters of vegetable cowpea (Vigna unguiculata L. Walp). Int J Environ Clim Change. 13(10):2650–2657. doi:10.9734/ijecc/2023/v13i102930
  • Bordoloi D, Sarma D, Barua NS, Das BK. 2023. Mutation induction in aromatic Joha rice of Assam for improvement of morpho-agronomic traits through M1 to M3 generation. Int J Radiat Biol. 99(11):1760–1777. doi:10.1080/09553002.2023.2214197
  • Boukar O, Belko N, Chamarthi S, Togola A, Batieno J, Owusu E, Haruna M, Diallo S, Umar ML, Olufajo O, et al. 2019. Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed. 138(4):415–424. doi:10.1111/pbr.12589
  • El-Fiki A, Adam Z, Mohamed T, Sobieh S, Salah A. 2018. Molecular diversity analysis of two in vitro and irradiated potato varieties expressed by random amplified polymorphic DNA. Not Sci Biol. 10(1):45–51. doi:10.15835/nsb10110157
  • El-Fiki A, Adly M. 2019. Molecular characterization and genetic diversity in some Egyptian wheat (Triticum aestivum L.) using microsatellite markers. Potr Sovak J Food Sci. 13(1):100–108. doi:10.5219/978
  • El-Fiki A, Fahmy EM, Abo Doma AH, Helmy O, Adly M, El-Metabteb G. 2021. The genetic variation assessment of in vitro irradiated tomato (Lycopersicon esculentum Mill) by SCoT and ISSR markers. J Microb Biotechnol Food Sci. 10(4):557–565. doi:10.15414/jmbfs.2021.10.4.557-565
  • Elharadallou SB, Khalid II, Gobouri AA, Abdel-Hafez SH. 2015. Amino acid composition of cowpea (Vigna unguiculata (L.) Walp) flour and its protein isolates. Food Nutr Sci. 6(9):790–797. doi:10.4236/fns.2015.69082
  • El-Orabey WM, El-Shazly HH, Ahmed TA, et al. 2020. Molecular characterization of mutant cowpea genotypes using RAPD and ISSR markers. Plant Gene. 23:100227.
  • Essel E, Asante I. 2016. Mutagenic effect of gamma irradiation on seed germination and yield components of Cowpea (Vigna unguiculata L. Walp). J Ghana Sci Assoc. 17(1):53–59.
  • Ezzat A, Adly M, El-Fiki A. 2019. Morphological, agronomical and molecular characterization in irradiated Cowpea (Vigna unguiculata (L.) Walp.) and detection by start codon target markers. J Radiat Res Appl Sci. 12(1):403–412. doi:10.1080/16878507.2019.1686578
  • FAOSTAT. 2021. Statistical databases. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC.
  • Gaafar RM, Hamouda M, Badr A. 2016. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line. J Genet Eng Biotechnol. 14(1):61–68. doi:10.1016/j.jgeb.2015.12.005
  • Gioi TD, Boora KS, Chaudhary K. 2011. Investigation of genetic relationship among yellow mosaic virus resistant cowpea lines by using microsatellite markers. Afr J Plant Sci. 5(10):579–590.
  • Giridhar K, Raju PS, Pushpalatha G, Patra C. 2020. Effects of plant density on yield parameters of cowpea (Vigna unguiculata L.). Int J Chem Stud. 8(4):344–347. doi:10.22271/chemi.2020.v8.i4f.10090
  • Gomez KA, Gomez AA. 1984. Statistical procedures for agriculture research. New York: John Wiley & Sons; p. 680.
  • Hafiz NA, Damarany AM. 2006. Variation in the susceptibility of some cowpea (Vigna unguiculata (L.) Walp) genotypes to infestation with certain pests in Upper Egypt. Assiut Univ Bull Environ Res. 9(1):8–15.
  • Horn LN, Ghebrehiwot HM, Shimelis HA. 2016. Selection of novel cowpea genotypes derived through gamma irradiation. Front Plant Sci. 7:262. doi:10.3389/fpls.2016.00262
  • Jain SM. 2010. Mutagenesis in crop improvement under the climate change. Roman Biotechnol Lett. 15(2):88–106.
  • Jan S, Parween T, Siddiqi TO, Mahmooduzzafar X. 2010. Gamma radiation effects on growth and yield attributes of Psoralea corylifolia L. with reference to enhanced production of psoralen. Plant Growth Regul. 64(2):163–171. doi:10.1007/s10725-010-9552-z
  • José Rodrigues Cruz F, Júnior de Almeida H, dos Santos DMM. 2014. Growth, nutritional status and nitrogen metabolism in Vigna unguiculata (L.) Walp is affected by aluminum. Aust J Crop Sci. 8(7):1132–1139.
  • Kirse A, Karklina D. 2015. Integrated evaluation of cowpea (Vigna unguiculata (L.) Walp.) and maple pea (Pisum sativum var. arvense L.) spreads. Agron Res. 13(4):956–968.
  • Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A. 2016. Molecular breeding in wheat: technologies and applications. In: Advances in wheat genetics: from genome to field. Cham: Springer; p. 229–247.
  • Liu K, Muse SV. 2005. PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics. 21(9):2128–2129. doi:10.1093/bioinformatics/bti282
  • Mafakheri K, Bihamta MR, Abbasi AR. 2017. Assessment of genetic diversity in cowpea (Vigna unguiculata L.) germplasm using morphological and molecular characterization. Cogent Food Agric. 3(1):1327092. doi:10.1080/23311932.2017.1327092
  • Markam NK, Nair SK, Saxena RR, Nanda HC. 2018. Assessment of genetic diversity using SSR marker in moong bean [Vigna radiata (L.) Wilczek] genotypes. J Pharmacogn Phytochem. 7(2):2750–2754.
  • Nikolic A, Ignjatovic-Micic D, Kovacevic D, Camdzija Z, Filipovic M, Mladenovic-Drinic S. 2015. Genetic diversity of maize inbred lines as inferred from SSR markers. Genetika. 47(2):489–498. doi:10.2298/GENSR1502489N
  • Olsen JE, Dineva SB. 2017. Effects of chronic ionizing radiation and interactions with other environmental and climatic factors on plant growth and development. eJ Appl For Ecol. 5(1):31–53.
  • Pavel AB, Vasile CI. 2012. PyElph – a software tool for gel images analysis and phylogenetics. BMC Bioinformatics. 13(1):9. doi:10.1186/1471-2105-13-9
  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 2(3):225–238. doi:10.1007/BF00564200
  • Pradeepkumar T, Mathew D, Varun RC, Veni K, Midhila KR. 2017. Genetic interrelationship among cowpea varieties elucidated through morphometric, RAPD and SSR analyses. Legume Res. 40(3):409–415.
  • Raina A, Laskar RA, Tantray YR, Khursheed S, Wani MR, Khan S. 2020. Characterization of induced high yielding cowpea mutant lines using physiological, biochemical and molecular markers. Sci Rep. 10(1):3687. doi:10.1038/s41598-020-60601-6
  • Raina A, Laskar RA, Wani MR, Jan BL, Ali S, Khan S. 2022. Gamma rays and sodium azide induced genetic variability in high-yielding and biofortified mutant lines in cowpea [Vigna unguiculata (L.) Walp.]. Front Plant Sci. 13:911049. doi:10.3389/fpls.2022.911049
  • Saleh B, El-Shazly HH, El-Orabey WM, et al. 2017. Induction and identification of cowpea mutants with high yield and nutritional quality using gamma rays. J Genet Eng Biotechnol. 15(1):1–9.
  • Sarikamiş G, Yanmaz R, Ermiş S, Bakir M, Yüksel C. 2010. Genetic characterization of pea (Pisum sativum) germplasm from Turkey using morphological and SSR markers. Genet Mol Res. 9(1):591–600. doi:10.4238/vol9-1gmr762
  • Sharma TA, Kumar A, Dwivedi SC, Vyas RP. 2018. Molecular characterization and genetic diversity analysis of selected maize inbreds using SSR markers. J Environ Biol. 39(2):228–236. doi:10.22438/jeb/39/2/MRN-394
  • Shobha R, Rajeshwari CU, Andallu B. 2013. Effect of gamma irradiation on proximate composition, ascorbic acid and beta-carotene content of cowpea (Vigna unguiculata L. Walp) pods during storage. J Food Sci Technol. 50(6):1114–1119.
  • Silva A, Morais OM, Santos JL, d’Arede LO, Silva CJ, Rocha MM. 2014. Estimativa de parâmetros genéticos em Vigna unguiculata. Rev Ciênc Agrár. 37(4):399–407.
  • Singh B, Chakkal SK, Ahuja A. 2006. Effect of gamma irradiation on the amino acid composition and protein quality of cowpea (Vigna unguiculata L. Walp). Food Chem. 99(1):131–138.
  • Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science. 327(5967):818–822. doi:10.1126/science.1183700
  • van der Vyver C, Vorster BJ, Kunert KJ, Cullis CA. 2011. Analysis of radiation-induced genome alterations in Vigna unguiculata. Res Rep Biol. 2:89–99. doi:10.2147/RRB.S22790
  • Zhou L, Li W, Yu L, Li P, Li Q, Ma S, Dong X, Zhou G, Leloup C. 2006. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionantha. Int J Radiat Biol. 82(7):473–481. PMID: 16882619. doi:10.1080/09553000600863080

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.