18
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Human thymic stromal cell irradiation reduces intra-thymic T cell precursor proliferation: evidence for a soluble mediator

Pages 387-396 | Published online: 03 Jul 2009

  • AKIYAMA, M., 1995, Late effects of radiation on the human immune system: an overview of immune response among the atomic-bomb survivors. International Journal of Radiation Biology, 68, 497-508.
  • AKIYAMA, M., ZHOU, O. L., KUSUNOKI, Y, KYOIZUMI, S, KOHNO, N., AKIBA, S. and DELONGCHAMP, R. R., 1989, Age and dose-related alteration of in vitro mixed lymphocyte culture response of blood lymphocyte from A-bomb survivors. Radiation Research, 117, 26-34.
  • AMAGAI, T., KINA, T., HIROKAWA, K. I., NISHIKAWA, S. I., IMANISHI, J. and KATSURA, Y., 1987, Dysfunction of irradiated thymus for the development of helper T cells. Journal of Immunology, 139, 358-364.
  • ANDERSON, G, MOORE, N. C, OWEN, J. J. T. and JENKINSON, E. J., 1996, Cellular interactions in thymocyte development. Annual Renew of Immunology, 14, 73-99.
  • ATKINSON, K., 1990, Reconstruction of the haemopoietic and immune systems after marrow transplantation. Bone Marrow transplantation, 5, 209-226.
  • BERTHO, J. M., DEMARQUAY, C., MOULIAN, N., VAN DER MEEREN, A. and GOURMELON, P., 1997, Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cellular Immunology, 179, 30-40.
  • BLOMGREN, H., EDSMYR, F., NASLUND, I., PETRINI, B. and WASSERMAN, J., 1983, Distribution of lymphocyte subsets following radiation therapy directed to different body regions. Clinical Oncology, 9, 289-298.
  • BOYD, R. L. and HUGO, P., 1993, Towards an integrated view of thymopoiesis. Immunology Today, 12, 71-79.
  • BOYD, R. L., TUCEK, C. L., GODFREY, D. I., IZON, D. J, WILSON, T. J, DAVIDSON, N. J, BEAN, A. G. D, LADYMAN, H. M., RITTER, M. A. and HUGO, P., 1993, Inside the thymus: the thymic microenvironment. Immunology Today, 14, 445-459.
  • CARDING, S. R, HAYDAY, A. C. and BOTTOMLY, K., 1991, Cytokines in T-cell development. Immunology Today, 12, 239-245.
  • CLARKE, A. R., PURDIE, C. A., HARRISON, D. J., MORRIS, R. G., BIRD, C. C, HOOFER, M. L. and WYLLIE, A. H., 1993, Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 362, 849-852.
  • DORSHKIND, K., JOHNSON, A., COLLINS, L., KELLER, G. M. and PHILLIPS, R. A., 1986, Generation of purified stromal cell cultures that support lymphoid and myeloid precursors. Journal of Immunological Methods, 89, 37-47.
  • DUTREIX, J., GIRINSKY, T., COSSET, J. M., BERNARD, A., PICO, J., BAUME, D, BAYLE, CH. and BENK, V., 1987, Blood cell kinetics and total body irradiation. Radiotherapy and Oncology, 9, 119-129.
  • FREEDMAN, A. R., ZHU, H., LEVINE, J. D., KALAMS, S. and SCADDEN, D. T., 1996, Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nature Medicine, 2, 46-51.
  • HEITGER, A., NEU, N., KERN, H., PANZER-GRÜNMAYER, E. R., GREINIX, H., NACHBAUR, D., NIEDERWIESER, D. and FINK, F. M., 1997, Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood, 90, 850-857.
  • HIROKAWA, K. and SADO, T., 1984, Radiation effects on regeneration and T-cell-inducing function of the thymus. Cellular Immunology, 84, 372-379.
  • HUISKAMP, R, DAVIDS, J. A. G. and Vos, O., 1983, Short- and long-term effects of whole-body irradiation with fission neutrons or X-rays on the thymus in CBA mice. Radiation Research, 95, 370-381.
  • HUISKAMP, R, VAN VLIET, E. and VAN EWIJK, W., 1985, Repopulation of the mouse thymus after sublethal fission neutron irradiation. II. Sequential changes in the thymic microenvironment. Journal of Immunology, 134, 2170-2178.
  • KADISH, J. L. and BASCH, R. S., 1975, Thymic regeneration after lethal irradiation: evidence for an intra-thymic radioresistant T cell precursor. Journal of Immunology, 114, 452-458.
  • KAUFMANN, S. H. E., 1996, ?/d and other unconventional T lymphocytes: what do they see and what do they do? Proceedings of the National Academy of Sciences of the U S A, 93, 2272-2279.
  • KOOK, H, GOLDMAN, F, PADLEY, D, et al., 1996, Reconstitution of the immune system after unrelated or partial matched T-cell-depleted bone marrow transplantation in children: immunophenotypic analysis and factors affecting the speed of recovery. Blood, 88, 1089-1097.
  • LOWE, S. W., SCHMITT, E. M., SMITH, S. W., OSBORNE, B. A. and JACKS, T., 1993, p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature, 362, 847-849.
  • LUM, L. G., 1987, The kinetics of immune reconstitution after human bone marrow transplantation. Blood, 69, 369-380.
  • MOORE, T. A, VON FREEDEN-JEFFRY, U, MURRAY, R. and ZLOTNIK, A., 1996, Inhibition of ?d T cell development and early thymocyte maturation in IL-7 - / - mice. Journal of Immunology, 157, 2366-2373.
  • MORRISSEY, P. J., MCKENNA, H., WIDMER, M. B., BRADDY, S., VOICE, R., CHARRIER, K., WILLIAMS, D. E. and WATSON, J. D., 1994, Steel factor (c-kit ligand) stimulates the in vitro growth of immature CD3-/CD4-/CD8- thymocytes: synergy with IL-7. Cellular Immunology, 157, 118-131.
  • MÜLLER-HERMELINK, H. K., SALE, G. E., BORISCH, B. and STORB, R., 1987, Pathology of the thymus after allogeneic bone marrow transplantation in man. American Journal of Pathology, 129, 242-256.
  • PLUM, J., DE SMEDT, M., LECLERCQ, G., VERHASSELT, B. and VANDEKERCKHOVE, B., 1996, Interleukin-7 is a critical growth factor in early human T-cell development. Blood, 88, 4239-4254.
  • ROTSTEIN, S., BLOMGREN, H., PETRINI, B., WASSERMAN, J. and BARAL, E., 1985, Long term effects on the immune system following local therapy for breast cancer. I. Cellular composition of the peripheral blood lymphocyte population. International Journal of Radiation Oncology, Biology, Physics, 11, 921-925.
  • SAIAGH, S, RIGAL, D. and MONIER, J. C., 1994, Effects of PGE2 upon differentiation and programmed cell death of suspension cultured CD4-CD8- thymocytes. International Journal of Immunopharmacology, 16, 775-786.
  • SAVING, W. and DARDENNE, M., 1984, Thymic hormonecontaining cells VI. Immunohistologic evidence for the simultaneous presence of thymulin, thymopoietin and thymosin alpha 1 in normal and pathological human thymuses. European Journal of Immunology, 14, 987-991.
  • SCHMID, I., UITTENBOGAART, C. H., KELD, B. and GIORGI, J. V., 1994, A rapid method for measuring apoptosis and dualcolor immunofluorescence by single laser flow cytometry. Journal of Immunological Methods, 170, 145-157.
  • SCHMITT, C., KTORZA, S., SARUN, S., BLANC, C., DE JONG, R. and DEBRE, P., 1993, CD34-expressing human thymocyte precursors proliferate in response to interleukin-7 but have lost myeloid differentiation potential. Blood, 82, 3675-3685.
  • SCHREIBER, L., SHARABI, Y., SCHWARTZ, D., GOLDFINGER, N., BRODIE, C, ROTTER, V. and SHOHAM, J., 1996, Induction of apoptosis and p53 expression in immature thymocytes by direct interaction with thymic epithelial cells. Scandinavian Journal of Immunology, 44, 314-322.
  • SINGER, K. H., HARDEN, E. A., ROBERTSON, A. L., LOBACH, D. V. and HAYNES, B. F., 1985, In vitro growth and phenotypic characterization of mesodermal-derived and epithelial components of normal and abnormal human thymus. Human Immunology, 13, 161-176.
  • TJONNFJORD, G. E., VEIBY, O. P., STEEN, R. and EGELAND, T., 1993, T lymphocyte differentiation in vitro from adult human prethymic CD34+ bone marrow cells. Journal of Experimental Medicine, 177, 1531-1539.
  • VON BOEHMER, H. and KISIELOW, P., 1990, Self-nonself discrimination by T cells. Science, 248, 1369-1373.
  • WIEDMEIER, S. E., SAMLOWSKI, W. E., RASMUSSEN, C. J., HUANG, K. and DAYNES, R. A., 1988, Effects of ionizing radiation on thymic epithelial cell function. I. Radiationspared thymic epithelial grafts expedite the recovery of T cell function in lethally irradiated and fetal liver reconstituted mice. Journal of Immunology, 140, 21-29.
  • YARILIN, A. A., BELYAKOV, I. M., KUSMENOK, O. I., ARSHINOV, V. Y, SIMONOVA, A. V, NADEZHINA, N. M. and GNEZDITSKAYA, E. V., 1993, Late T cell deficiency in victims of the Chernobyl radiation accident: possible mechanisms of induction. International Journal of Radiation Biology, 63, 519-528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.