329
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Bacterial larvicides for vector control: mode of action of toxins and implications for resistance

&
Pages 1137-1168 | Received 03 Apr 2013, Accepted 28 Jun 2013, Published online: 19 Sep 2013

References

  • Abdullah, M. A., Valaitis, A. P., & Dean, D. H. (2006). Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochemistry, 7, 16. doi:10.1186/1471-2091-7-16
  • Alexander, B., & Priest, F. G. (1990). Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. Journal of General Microbiology, 136, 367–376. doi:10.1099/00221287-136-2-367
  • Amorim, L. B., de Barros, R. A., de Melo Chalegre, K. D., de Oliveira, C. M. F., Narcisa Regis, L., & Silva-Filha, M. H. N. L. (2010). Stability of Culex quinquefasciatus resistance to Bacillus sphaericus evaluated by molecular tools. Insect Biochemistry and Molecular Biology, 40, 311–316. doi:10.1016/j.ibmb.2010.02.002
  • Amorim, L. B., Oliveira, C. M. F., Rios, E. M., Regis, L., & Silva-Filha, M. H. N. L. (2007). Development of Culex quinquefasciatus resistance to Bacillus sphaericus strain IAB59 needs long term selection pressure. Biological Control, 42, 155–160. doi:10.1016/j.biocontrol.2007.04.007
  • Anderson, J. F., Ferrandino, F. J., Dingman, D. W., Main, A. J., Andreadis, T. G., & Becnel, J. J. (2011). Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. Journal of the American Mosquito Control Association, 27, 45–55. doi:10.2987/10-6079.1
  • Araújo, A. P., de Melo-Santos, M. A. V., Carlos, S. O., Rios, E. M. M. M., & Regis, L. (2007). Evaluation of an experimental product based on Bacillus thuringiensis sorovar. israelensis against Aedes aegypti larvae (Diptera: Culicidae). Biological Control, 41, 339–347. doi:10.1016/j.biocontrol.2007.03.002
  • Arenas, I., Bravo, A., Soberón, M., & Gómez, I. (2010). Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. Journal of Biological Chemistry, 285, 12497–12503. doi:10.1074/jbc.M109.085266
  • Atsumi, S., Miyamoto, K., Yamamoto, K., Narukawa, J., Kawai, S., Sezutsu, H., … Noda, H. (2012). Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences USA, 109, E1591–E1598. doi:10.1073/pnas.1120698109
  • Aziz, A. T., Dieng, H., Hassan, A. A., Satho, T., Miake, F., Salmah, M. R. C., & AbuBakar, S. (2011). Insecticide susceptibility of the dengue vector Aedes aegypti (Dipetra: Culicidae) in Makkah City, Saudi Arabia. Asian Pacific Journal of Tropical Disease, 1, 94–99. doi:10.1016/S2222-1808(11)60044-3
  • Barbazan, P., Baldet, T., Darriet, F., Escaffre, H., Djoda, D. H., & Hougard, J. M. (1997). Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. Journal of the American Mosquito Control Association, 13, 263–269. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_47-48/010012154.pdf
  • Baumann, P., Unterman, B. M., Baumann, L., Broadwell, A. H., Abbene, S. J., & Bowditch, R. D. (1985). Purification of the larvicidal toxin of Bacillus sphaericus and evidence for high-molecular-weight precursors. Journal of Bacteriology, 163, 738–747. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC219184/pdf/jbacter00219-0338.pdf
  • Bayyareddy, K., Andacht, T. M., Abdullah, M. A., & Adang, M. J. (2009). Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Insect Biochemistry and Molecular Biology, 39, 279–286. doi:10.1016/j.ibmb.2009.01.002
  • Becker, N. (1997). Microbial control of mosquitoes: Management of the upper Rhine mosquito population as a model programme. Parasitology Today, 13, 485–487. doi:10.1016/S0169-4758(97)01154-X
  • Becker, N., & Ludwig, M. (1993). Investigation on possible resistance in Aedes vexans field populations after 10-year application of Bacillus thuringiensis israelensis. Journal of the American Mosquito Control Association, 9, 221–224.
  • Bedoya-Perez, L. P., Cancino-Rodezno, A., Flores-Escobar, B., Soberón, M., & Bravo, A. (2013). Role of UPR pathway in defense response of Aedes aegypti against Cry11Aa toxin from Bacillus thuringiensis. International Journal of Molecular Sciences, 14, 8467–8478. doi:10.3390/ijms14048467
  • Berry, C., Hindley, J., Ehrhardt, A. F., Grounds, T., de Souza, I., & Davidson, E. W. (1993). Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. Journal of Bacteriology, 175, 510–518. Retrieved from http://jb.asm.org/content/175/2/510.long
  • Berry, C., O'Neil, S., Ben-Dov, E., Jones, A. F., Murphy, L., Quail, M. A., … Parkhill, J. (2002). Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Applied and Environmental Microbiology, 68, 5082–5095. doi:10.1128/AEM.68.10.5082-5095.2002
  • Boonserm, P., Davis, P., Ellar, D. J., & Li, J. (2005). Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. Journal of Molecular Biology, 348, 363–382. doi:10.1016/j.jmb.2005.02.013
  • Boonserm, P., Moonsom, S., Boonchoy, C., Promdonkoy, B., Parthasarathy, K., & Torres, J. (2006). Association of the components of the binary toxin from Bacillus sphaericus in solution and with model lipid bilayers. Biochemical and Biophysical Research Communications, 342, 1273–1278. doi:10.1016/j.bbrc.2006.02.086
  • Boyer, S., Paris, M., Jego, S., Lemperiere, G., & Ravanel, P. (2012). Influence of insecticide Bacillus thuringiensis subs. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae). Biological Control, 62, 75–81. doi:10.1016/j.biocontrol.2012.02.001
  • Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–435. doi:10.1016/j.toxicon.2006.11.022
  • Bravo, A., Gómez, I., Conde, J., Muñoz-Garay, C., Sánchez, J., Miranda, R., … Soberón, M. (2004). Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta, 1667, 38–46. doi:10.1016/j.bbamem.2004.08.013
  • Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberón, M. (2011). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41, 423–431. doi:10.1016/j.ibmb.2011.02.006
  • Broadwell, A. H., & Baumann, P. (1987). Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Applied and Environmental Microbiology, 53, 1333–1337. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC203865/pdf/aem00123-0137.pdf
  • Broadwell, A. H., Clark, M. A., Baumann, L., & Baumann, P. (1990). Construction by site-directed mutagenesis of a 39-kilodalton mosquitocidal protein similar to the larva-processed toxin of Bacillus sphaericus 2362. Journal of Bacteriology, 172, 4032–4036. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC213389/pdf/jbacter00121-0508.pdf
  • Burton, S. L., Ellar, D. J., Li, J., & Derbyshire, D. J. (1999). N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. Journal of Molecular Biology, 287, 1011–1022. doi:10.1006/jmbi.1999.2649
  • Butko, P. (2003). Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses. Applied and Environmental Microbiology, 69, 2415–2422. doi:10.1128/AEM.69.5.2415-2422.2003
  • Cadavid-Restrepo, G., Sahaza, J., & Orduz, S. (2012). Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance. Memórias do Instituto Oswaldo Cruz, 107, 74–79. doi:10.1590/S0074-02762012000900013
  • Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., Pauchet, Y., … Bravo, A. (2010). The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 40, 58–63. doi:10.1016/j.ibmb.2009.12.010
  • Cancino-Rodezno, A., Lozano, L., Oppert, C., Castro, J. I., Lanz-Mendoza, H., Encarnación, S., … Bravo, A. (2012). Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis. PLoS One, 7, e37034. doi:10.1371/journal.pone.0037034.t003
  • Cantón, P. E., Zanicthe Reyes, E. Z., Ruiz de Escudero, I., Bravo, A., & Soberón, M. (2011). Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Peptides, 32, 595–600. doi:10.1016/j.peptides.2010.06.005
  • Chalegre, K. D., Romão, T. P., Amorim, L. B., Anastacio, D. B., de Barros, R. A., de Oliveira, C. M. F., … Silva-Filha, M. H. N. L. (2009). Detection of an allele conferring resistance to Bacillus sphaericus binary toxin in Culex quinquefasciatus populations by molecular screening. Applied and Environmental Microbiology, 75, 1044–1049. doi:10.1128/AEM.02032-08
  • Chalegre, K. D., Romão, T. P., Tavares, D. A., Santos, E. M., Ferreira, L. M., Oliveira, C. M. F., … Silva-Filha, M. H. N. L. (2012). Novel mutations associated to Bacillus sphaericus resistance are identified in a polymorphic region of the Culex quinquefasciatus cqm1 gene. Applied and Environmental Microbiology, 78, 6321–6326. doi:10.1128/AEM.01199-12
  • Charles, J.-F. (1987). Ultrastructural midgut events in Culicidae larvae fed with Bacillus sphaericus 2297 spore/crystal complex. Annalles de l'Institut Pasteur Microbiologie, 138, 471–484. doi:10.1016/0769-2609(87)90064-0
  • Charles, J. F., & de Barjac, H. (1983). Action of crystals of Bacillus thuringiensis var. israelensis on the midgut of Aedes aegypti L. larvae, studied by electron microscopy. Annalles de Microbiologie (Paris), 134A, 197–218.
  • Charles, J.-F., Nielsen-LeRoux, C., & Delecluse, A. (1996). Bacillus sphaericus toxins: Molecular biology and mode of action. Annual Review of Entomology, 41, 451–472. doi:10.1146/annurev.en.41.010196.002315
  • Charles, J. F., Silva-Filha, M. H., Nielsen-LeRoux, C., Humphreys, M. J., & Berry, C. (1997). Binding of the 51- and 42-kDa individual components from the Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae). FEMS Microbiology Letters, 156, 153–159. doi:10.1016/S0378-1097(97)00419-9
  • Chen, J., Aimanova, K. G., Fernandez, L. E., Bravo, A., Soberon, M., & Gill, S. S. (2009). Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochemistry Journal, 424, 191–200. doi:10.1042/BJ20090730
  • Chen, J., Aimanova, K. G., Pan, S., & Gill, S. S. (2009). Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochemistry and Molecular Biology, 39, 688–696. doi:10.1016/j.ibmb.2009.08.003
  • Crickmore, N., Bone, E. J., Wiliams, J. A., & Ellar, D. J. (1995). Contribution of the individual components of the delta-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subs. israelensis. FEMS Microbiology Letters, 131, 249–254. doi:10.1111/j.1574-6968.1995.tb07784.x
  • Darboux, I., Charles, J.-F., Pauchet, Y., Warot, S., & Pauron, D. (2007). Transposon-mediated resistance to Bacillus sphaericus in a field-evolved population of Culex pipiens (Diptera: Culicidae). Cellular Microbiology, 9, 2022–2029. doi:10.1111/j.1462-5822.2007.00934.x
  • Darboux, I., Nielsen-LeRoux, C., Charles, J.-F., & Pauron, D. (2001). The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochemistry and Molecular Biology, 31, 981–990. doi:10.1016/S0965-1748(01)00046-7
  • Darboux, I., Pauchet, Y., Castella, C., Silva-Filha, M. H., Nielsen-LeRoux, C., Charles, J. F., & Pauron, D. (2002). Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proceedings of the National Academy of Sciences USA, 99, 5830–5835. doi:10.1073/pnas.092615399
  • Davidson, E.W. (1988). Binding of the Bacillus sphaericus (Eubacteriales: Bacillaceae) toxin to midgut cells of mosquito (Diptera: Culicidae) larvae: Relationship to host range. Journal of Medical Entomology, 25, 151–157.
  • Davidson, E. W. (1989). Variation in binding of Bacillus sphaericus toxin and wheat germ agglutinin to larval midgut cells of six species of mosquitoes. Journal of Invertebrate Pathology, 53, 251–259. doi:10.1016/0022-2011(89)90015-3
  • de Barjac, H. (1978). A new variety of Bacillus thuringiensis very toxic to mosquitoes: B. thuringiensis var. israelensis serotype 14. Comptes Rendus des Seances Hebdomadaires de lAcademie des Sciences Serie D, 286, 797–800.
  • de Barros Moreira Beltrão, H., & Silva-Filha, M. H. N. L. (2007). Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiology Letters, 266, 163–169. doi:10.1111/j.1574-6968.2006.00527.x
  • de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N., & Schnepf, H. E. (2003). Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annual Review of Genetics, 37, 409–433. doi:10.1146/annurev.genet.37.110801.143042
  • de Melo, J. V., Jones, G. W., Berry, C., Vasconcelos, R. H. T., de Oliveira, C. M. F., Furtado, A. F., … Silva-Filha, M. H. N. L. (2009). Cytopathological effects of Bacillus sphaericus Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant Culex quinquefasciatus larvae. Applied and Environmental Microbiology, 75, 4782–4789. doi:10.1128/AEM.00811-09
  • de Melo, J. V., Vasconcelos, R. H. T., Furtado, A. F., Peixoto, C. A., & Silva-Filha, M. H. N. L. (2008). Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus. Micron, 39, 1342–1350. doi:10.1016/j.micron.2008.02.002
  • de Oliveira, C. M., Filho, F. C., Beltran, J. E., Silva-Filha, M. H., & Regis, L. (2003). Biological fitness of a Culex quinquefasciatus population and its resistance to Bacillus sphaericus. Journal of the American Mosquito Control Association, 19, 125–129.
  • Dechklar, M., Tiewsiri, K., Angsuthanasombat, C., & Pootanakit, K. (2011). Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: A Bacillus thuringiensis Cry4Ba toxin receptor. Insect Biochemistry and Molecular Biology, 41, 159–166. doi:10.1016/j.ibmb.2010.11.006
  • Derbyshire, D. J., Ellar, D. J., & Li, J. (2001). Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallographica Section D, Biological Crystallography, 57, 1938–1944. doi:10.1107/S090744490101040X
  • Dritz, D. A., Lawler, S. P., Evkhanian, C., Graham, P., Baracosa, V., & Dula, G. (2011). Control of mosquito larvae in seasonal wetlands on a wildlife refuge using VectoMax CG. Journal of the American Mosquito Control Association, 27, 398–403. doi:10.2987/11-6161.1
  • Elangovan, G., Shanmugavelu, M., Rajamohan, F., Dean, D. H., & Jayaraman, K. (2000). Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis. Biochemical and Biophysical Research Communications, 276, 1048–1055. doi:10.1006/bbrc.2000.3575
  • Federici, B. A., Park, H. D., & Bideshi, D. K. (2010). Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control. The Open Toxinology Journal, 3, 83–100. doi:10.2174/1875414701003010083
  • Federici, B. A., Park, H.-W., Bideshi, D. K., Wirth, M. C., Johnson, J. J., Sakano, Y., & Tang, M. (2007). Developing recombinant bacteria for control of mosquito larvae. Journal of the American Mosquito Control Association, 23, 164–175. doi:10.2987/8756-971X(2007)23[164:DRBFCO]2.0.CO;2
  • Fernández, L. E., Aimanova, K. G., Gill, S. S., Bravo, A., & Soberón, M. (2006). A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochemical Journal, 394, 77–84. doi:10.1042/BJ20051517
  • Fernández, L. E., Martinez-Anaya, C., Lira, E., Chen, J., Evans, A., Hernández-Martínez, S., … Soberón, M. (2009). Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from Aedes aegypti. Biochemistry, 48, 8899–8907. doi:10.1021/bi900979b
  • Fernández, L. E., Pérez, C., Segovia, L., Rodríguez, M. H., Gill, S. S., Bravo, A., & Soberón, M. (2005). Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop alpha-8 of domain II. FEBS Letters, 579, 3508–3514. doi:10.1016/j.febslet.2005.05.032
  • Fernandez-Luna, M. T., Lanz-Mendoza, H., Gill, S. S., Bravo, A., Soberon, M., & Miranda-Rios, J. (2010). An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). Environmental Microbiology, 12, 746–757. doi:10.1111/j.1462-2920.2009.02117.x
  • Ferré, J., Real, M. D., Van Rie, J., Jansens, S., & Peferoen, M. (1991). Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the National Academy of Sciences USA, 88, 5119–5123. doi:10.1073/pnas.88.12.5119
  • Ferré, J., & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47, 501–533. doi:10.1146/annurev.ento.47.091201.145234
  • Ferreira, L. M., Romão, T. P., de-Melo-Neto, O. P., & Silva-Filha, M. H. N. L. (2010). The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored alpha-glucosidase, which does not bind to the insecticidal binary toxin. Insect Biochemistry and Molecular Biology, 40, 604–610. doi:10.1016/j.ibmb.2010.05.007
  • Gahan, L. J., Gould, F., & Heckel, D. G. (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 293, 857–860. doi:10.1126/science.1060949
  • Gahan, L. J., Pauchet, Y., Vogel, H., & Heckel, D. G. (2010). An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics, 6, e1001248. doi:10.1371/journal.pgen.1001248.s006
  • Georghiou, G. P., & Wirth, M. C. (1997). Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Applied and Environmental Microbiology, 63, 1095–1101. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1389136/pdf/hw1095.pdf
  • Goldberg, L. H., & Margalit, J. (1978). A bacterial spore demostrating rapid larvicidal activity against Anopheles segentii, Uranotaenia unguiculata, Culex univitatus, Aedes aegypti and Culex pipiens. Mosquito News, 37, 355–358.
  • Goldman, I. F., Arnold, J., & Carlton, B. C. (1986). Selection for resistance to Bacillus thuringiensis subspecies israelensis in field and laboratory populations of the mosquito Aedes aegypti. Journal of Invertebrate Pathology, 47, 317–324. doi:10.1016/0022-2011(86)90102-3
  • Gómez, I., Pardo-López, L., Muñoz-Garay, C., Fernandez, L. E., Pérez, C., Sánchez, J., … Bravo, A. (2007). Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides, 28, 169–173. doi:10.1016/j.peptides.2006.06.013
  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J.-L., Brousseau, R., & Cygler, M. (1995). Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. Journal of Molecular Biology, 254, 447–464. doi:10.1006/jmbi.1995.0630
  • Guerchicoff, A., Ugalde, R. A., & Rubinstein, C. P. (1997). Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Applied and Environmental Microbiology, 63, 2716–2721. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC168567/pdf/632716.pdf
  • Guidi, V., Patocchi, N., Luthy, P., & Tonolla, M. (2011). Distribution of Bacillus thuringiensis subsp. israelensis in soil of a Swiss wetland reserve after 22 years of mosquito control. Applied and Environmental Microbiology, 77, 3663–3668. doi:10.1128/AEM.00132-11
  • Guillet, P., Kurtak, D. C., Phillipon, B., & Meyer, R. (1990). Use of Bacillus thuringiensis for onchocerciasis control in West Africa. In: H. Barjac & D. Sutherland (Eds.), Bacterial control of mosquitoes and black-flies (pp. 187–201). New Brunswick, NJ: Rutgers University Press.
  • Guzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Gubler, D. J., … Peeling, R. W. (2010). Dengue: A continuing global threat. Nature Reviews Microbiology, 8, S7–S16. doi:10.1038/nrmicro2460
  • Heckel, D. G., Gahan, L. J., Baxter, S. W., Zhao, J.-Z., Shelton, A. M., Gould, F., & Tabashnik, B. E. (2007). The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology, 95, 192–197. doi:10.1016/j.jip.2007.03.008
  • Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2004). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34, 653–665. doi:10.1016/j.ibmb.2004.03.018
  • Hire, R. S., Hadapad, A. B., Dongre, T. K., & Kumar, V. (2009). Purification and characterization of mosquitocidal Bacillus sphaericus BinA protein. Journal of Invertebrate Pathology, 101, 106–111. doi:10.1016/j.jip.2009.03.005
  • Hofte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Review, 53, 242–255. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372730/pdf/microrev00041-0080.pdf
  • Hongyu, Z., Changju, Y., Jingye, H., & Lin, L. (2004). Susceptibility of field populations of Anopheles sinensis (Diptera:Culicidae) to Bacillus thuringiensis subs. israelensis. Biocontrol Science and Technology, 14, 321–325. doi:10.1080/09583150310001639187
  • Hougard, J. M., & Seketeli, A. (1998). Combating onchocerciasis in Africa after 2002: The place of vector control. Annals of Tropical Medicine and Parasitology, 92, S165–S166. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_49-50/010013696.pdf
  • Hua, G., Zhang, R., Abdullah, M. A. F., & Adang, M. J. (2008). Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry, 47, 5101–5110. doi:10.1021/bi7023578
  • Humphreys, M. J., & Berry, C. (1998). Variants of the Bacillus sphaericus binary toxins: Implications for differential toxicity of strains. Journal of Invertebrate Pathology, 71, 184–185. doi:10.1006/jipa.1997.4711
  • Jimenez, A. I., Reyes, E. Z., Cancino-Rodezno, A., Bedoya-Pérez, L. P., Caballero-Flores, G. G., Muriel-Millan, L. F., … Soberón, M. (2012). Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins. Insect Biochemistry and Molecular Biology, 42, 683–689. doi:10.1016/j.ibmb.2012.06.001
  • Jones, G. W., Nielsen-Leroux, C., Yang, Y., Yuan, Z., Dumas, V. F., Monnerat, R. G., & Berry, C. (2007). A new Cry toxin with a unique two-component dependency from Bacillus sphaericus. The FASEB Journal, 21, 4112–4120. doi:10.1096/fj.07-8913com
  • Jones, G. W., Wirth, M. C., Monnerat, R. G., & Berry, C. (2008). The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity. Environmental Microbiology, 10, 2418–2424. doi:10.1111/j.1462-2920.2008.01667.x
  • Jurat-Fuentes, J. L., & Adang, M. J. (2004). Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. European Journal of Biochemistry, 271, 3127–3135. doi:10.1111/j.1432-1033.2004.04238.x
  • Jurat-Fuentes, J. L., & Adang, M. J. (2006). Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Journal of Invertebrate Pathology, 92, 166–171. doi:10.1016/j.jip.2006.01.010
  • Kamgang, B., Marcombe, S., Chandre, F., Nchoutpouen, E., Nwane, P., Etang, J., … Paupy, C. (2011). Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasite & Vectors, 4, 79. doi:10.1186/1756-3305-4-60
  • Karch, S., & Charles, J.-F. (1987). Toxicity, viability and ultrastructure of Bacillus sphaericus 2362 spore/crystal complex used in the field. Annales de l'Institut Pasteur/Microbiologie, 138, 485–492. doi:10.1016/0769-2609(87)90065-2
  • Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B. C., Rogoff, M. H., & Singer, S. (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. Journal of Invertebrate Pathology, 7, 442–448. doi:10.1016/0022-2011(65)90120-5
  • Knight, P. J. K., Crickmore, N., & Ellar, D. J. (1994). The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Molecular Microbiology, 11, 429–436. doi:10.1111/j.1365-2958.1994.tb00324.x
  • Knowles, B. H., & Ellar, D. J. (1987). Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxins with different insect specificity. Biochimica et Biophysica Acta (BBA) – General Subjects, 924, 509–518. doi:10.1016/0304-4165(87)90167-X
  • Koni, P. A., & Ellar, D. J. (1994). Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology, 140, 1869–1880. doi:10.1099/13500872-140-8-1869
  • Krasikov, V. V., Karelov, D. V., & Firsov, L. M. (2001). Alpha-glucosidases. Biochemistry (Moscow.), 66, 267–281. doi:10.1023/A:1010243611814
  • Kumar, A., Sharma, V. P., Sumodan, P. K., Thavaselvam, D., & Kamat, R. H. (1994). Malaria control utilizing Bacillus sphaericus against Anopheles stephensi in Panaji, Goa. Journal of the American Mosquito Control Association, 10, 534–539.
  • Kyle, J. L., & Harris, E. (2008). Global spread and persistence of dengue. Annual Review of Microbiology, 62, 71–92. doi:10.1146/annurev.micro.62.081307.163005
  • Lacey, L. A. (2007). Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23, 133–163. doi:10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2
  • Lacey, L. A., Heitzman, C. M., Meisch, M., & Billodeaux, J. (1986). Beecomist-applied Bacillus sphaericus for the control of riceland mosquitoes. Journal of the American Mosquito Control Association, 2, 548–551. Retrieved from http://citebank.org/sites/default/files/JAMCA_V02_N4_P548-551.pdf
  • Lee, Y. W., & Zairi, J. (2006). Susceptibility of laboratory and field-collected Aedes aegypti and Aedes albopictus to Bacillus thuringiensis israelensis H-14. Journal of the American Mosquito Control Association, 22, 97–101. doi:10.2987/8756-971X(2006)22[97:SOLAFA]2.0.CO;2
  • Li, J., Koni, P. A., & Ellar, D. J. (1996). Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. Journal of Molecular Biology, 257, 129–152. doi:10.1006/jmbi.1996.0152
  • Li, J. D., Carroll, J., & Ellar, D. J. (1991). Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 353, 815–821. doi:10.1038/353815a0
  • Likitvivatanavong, S., Chen, J., Evans, A. M., Bravo, A., Soberon, M., & Gill, S. S. (2011). Multiple receptors as targets of Cry toxins in mosquitoes. Journal of Agriculture and Food Chemistry, 59, 2829–2838. doi:10.1021/jf1036189
  • Limpanawat, S., Promdonkoy, B., & Boonserm, P. (2009). The C-terminal domain of BinA is responsible for Bacillus sphaericus binary toxin BinA–BinB interaction. Current Microbiology, 59, 509–513. doi:10.1007/s00284-009-9468-x
  • Liu, H., Cupp, E. W., Guo, A., & Liu, N. (2004). Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. Journal of Medical Entomology, 41, 946–952. doi:10.1603/0022-2585-41.5.946
  • Liu, H., Cupp, E. W., Micher, K. M., Guo, A., & Liu, N. (2004). Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefasciatus. Journal of Medical Entomology, 41, 408–413. doi:10.1603/0022-2585-41.3.408
  • Liu, J. W., Porter, A. G., Wee, B. Y., & Thanabalu, T. (1996). New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxins. Applied and Environmental Microbiology, 62, 2174–2176. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC167996/pdf/622174.pdf
  • Loke, S. R., Andy-Tan, W. A., Benjamin, S., Lee, H. L., & Sofian-Azirun, M. (2010). Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae) to Bacillus thuringiensis israelensis and temephos. Tropical Biomedicine, 27, 493–503. Retrieved from http://www.msptm.org/files/493_-_503_Loke_SR.pdf
  • Mardini, L. B. L. F., Torres, M. A. N., da Silveira, G. L., & Atz, A. M. V. (2000). Simulium spp. control program in Rio Grande do Sul, Brazil. Memórias do Instituto Oswaldo Cruz, 95, 211–214. doi:10.1590/S0074-02762000000700036
  • Margalit, J., & Dean, D. (1985). The story of Bacillus thuringiensis var. israelensis (B.t.i.). Journal of the American Mosquito Control Association, 1, 1–7. Retrieved from http://citebank.org/uid.php?id=102176
  • Melo-Santos, M. A., Araújo, A. P., Rios, E. M. M., & Regis, L. (2009). Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biological Control, 49, 186–191. doi:10.1016/j.biocontrol.2009.01.011
  • Mittal, P. (2005). Laboratory selection to investigate the development of resistance to Bacillus thuringiensis var. israelensis H-14 in Culex quinquefasciatus Say (Diptera: Culicidae). National Academy Science Letters India, 28, 281–283. Retrieved from http://www.mrcindia.org/journal/issues/401020.pdf
  • Moonsom, S., Chaisri, U., Kasinrerk, W., & Angsuthanasombat, C. (2007). Binding characteristics to mosquito-larval midgut proteins of the cloned domain II–III fragment from the Bacillus thuringiensis Cry4Ba toxin. Journal of Biochemistry and Molecular Biology, 40, 783–790. doi:10.5483/BMBRep.2007.40.5.783
  • Morin, S., Biggs, R. W., Sisterson, M. S., Shriver, L., Ellers-Kirk, C., Higginson, D., … Tabashnik, B. E. (2003). Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the USA, 100, 5004–5009. doi:10.1073/pnas.0831036100
  • Mulla, M. S., Thavara, U., Tawatsin, A., Chomposri, J., & Su, T. (2003). Emergence of resistance and resistance management in field populations of tropical Culex quinquefasciatus to the microbial control agent Bacillus sphaericus. Journal of the American Mosquito Control Association, 19, 39–46. Retrieved from http://webdb.dmsc.moph.go.th/ifc_nih/applications/files/13_entomo%20e.pdf
  • Mulla, M. S., Thavara, U., Tawatsin, A., Kong-ngamsuk, W., Chompoosri, J., & Su, T. (2001). Mosquito larval control with Bacillus sphaericus: Reduction in adult populations in low-income communities in Nonthaburi Province, Thailand. Journal of Vector Ecology, 26, 221–231. Retrieved from http://webdb.dmsc.moph.go.th/ifc_nih/applications/files/12_Entomo%20E.pdf
  • Nagamatsu, Y., Toda, S., Koike, T., Miyoshi, Y., Shigematsu, S., & Kogure, M. (1998). Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Bioscience, Biotechnology and Biochemistry, 62, 727–734. doi:10.1271/bbb.62.727
  • Nicolas, L., Darriet, F., & Hougard, J. M. (1987). Efficacy of Bacillus sphaericus 2362 against larvae of Anopheles gambiae under laboratory and field conditions in West Africa. Medical and Veterinary Entomology, 1, 157–162. doi:10.1111/j.1365-2915.1987.tb00337.x
  • Nicolas, L., Nielsen-Leroux, C., Charles, J.-F., & Delécluse, A. (1993). Respective role of the 42– and 51-kDa components of the Bacillus sphaericus toxin overexpressed in Bacillus thuringiensis. FEMS Microbiology Letters, 106, 275–279. doi:10.1111/j.1574-6968.1993.tb05976.x
  • Nielsen-Leroux, C., & Charles, J.-F. (1992). Binding of Bacillus sphaericus binary toxin to a specific receptor on midgut brush-border membranes from mosquito larvae. European Journal of Biochemistry, 210, 585–590. doi:10.1111/j.1432-1033.1992.tb17458.x
  • Nielsen-Leroux, C., Charles, J.-F., Thiery, I., & Georghiou, G. P. (1995). Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. European Journal of Biochemistry, 228, 206–210. doi:10.1111/j.1432-1033.1995.tb20251.x
  • Nielsen-Leroux, C., Pasquier, F., Charles, J. F., Sinegre, G., Gaven, B., & Pasteur, N. (1997). Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens (Diptera: Culicidae) larvae. Journal of Medical Entomology, 34, 321–327. Retrieved from http://www.researchgate.net/publication/14066057_Resistance_to_Bacillus_sphaericus_involves_different_mechanisms_in_Culex_pipiens_(DipteraCulicidae)_larvae/file/9fcfd50b74e308cd20.pdf
  • Nielsen-Leroux, C., Pasteur, N., Prètre, J., Charles, J.-f., Sheikh, H. B., & Chevillon, C. (2002). High resistance to Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae): the complex situation of West Mediterranean countries Journal of Medical Entomology, 39, 729–735. doi:10.1603/0022-2585-39.5.729
  • Nishiwaki, H., Nakashima, K., Ishida, C., Kawamura, T., & Matsuda, K. (2007). Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Applied and Environmental Microbiology, 73, 3404–3411. doi:10.1128/AEM.00021-07
  • Ochoa-Campuzano, C., Real, M. D., Martínez-Ramírez, A. C., Bravo, A., & Rausell, C. (2007). An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. Biochemical and Biophysical Research Communications, 362, 437–442. doi:10.1016/j.bbrc.2007.07.197
  • Oei, C., Hindley, J., & Berry, C. (1990). An analysis of the genes encoding the 51.4– and 41.9-kDa toxins of Bacillus sphaericus 2297 by deletion mutagenesis: the construction of fusion proteins. FEMS Microbiology Letters, 72, 265–273. doi:10.1111/j.1574-6968.1990.tb03900.x
  • Oei, C., Hindley, J., & Berry, C. (1992). Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains. Journal of General Microbiology, 138, 1515–1526. doi:10.1099/00221287-138-7-1515
  • Oliveira, C. M. F., Silva-Filha, M. H., Nielsen-Leroux, C., Pei, G., Yuan, Z., & Regis, L. (2004). Inheritance and mechanism of resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from China and Brazil. Journal of Medical Entomology, 41, 58–64. doi:10.1603/0022-2585-41.1.58
  • Opota, O., Charles, J.-F., Warot, S., Pauron, D., & Darboux, I. (2008). Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae. Comparative Biochemistry and Physiology-Part B Biochemistry and Molecular Biology, 149, 419–427. doi:10.1016/j.cbpb.2007.11.002
  • Opota, O., Gauthier, N. C., Doye, A., Berry, C., Gounon, P., Lemichez, E., & Pauron, D. (2011). Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication. PLoS One, 6, e14682. doi:10.1371/journal.pone.0014682
  • Orduz, S., Rojas, W., Correa, M. M., Montoya, A. E., & de Barjac, H. (1992). A new serotype of Bacillus thuringiensis from Colombia toxic to mosquito larvae. Journal of Invertebrate Pathology, 59, 99–103. doi:10.1016/0022-2011(92)90118-N
  • Pardo-López, L., Soberón, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37, 3–22. doi:10.1111/j.1574-6976.2012.00341.x
  • Paris, M., Boyer, S., Bonin, A., Collado, A., David, J. P., & Despres, L. (2010). Genome scan in the mosquito Aedes rusticus: population structure and detection of positive selection after insecticide treatment. Molecular Ecology, 19, 325–337. doi:10.1111/j.1365-294X.2009.04437.x
  • Paris, M., David, J.-P., & Despres, L. (2011). Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology, 20, 1184–1194. doi:10.1007/s10646-011-0663-8
  • Paris, M., Tetreau, G., Laurent, F., Lelu, M., Despres, L., & David, J.-P. (2011). Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Management Science, 67, 122–128. doi:10.1002/ps.2046
  • Park, H. W., Bideshi, D. K., Wirth, M. C., Johnson, J. J., Walton, W. E., & Federici, B. A. (2005). Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile virus. American Journal of Tropical Medicine and Hygiene, 72, 732–738. Retrieved from http://www.ajtmh.org/content/72/6/732.full.pdf+html
  • Paul, A., Harrington, L. C., Zhang, L., & Scott, J. G. (2005). Insecticide resistance in Culex pipiens from New York. Journal of the American Mosquito Control Association, 21, 305–309. doi:10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2
  • Pei, G., Oliveira, C. M. F., Yuan, Z., Nielsen-LeRoux, C., Silva-Filha, M. H., Yan, J., & Regis, L. (2002). A strain of Bacillus sphaericus causes slower development of resistance in Culex quinquefasciatus. Applied and Environmental Microbiology, 68, 3003–3009. doi:10.1128/AEM.68.6.3003-3009.2002
  • Perez, C., Fernandez, L. E., Sun, J., Folch, J. L., Gill, S. S., Soberón, M. &Bravo, A. (2005). Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proceedings of the National Academy of Sciences USA, 102, 18303–18308. doi:10.1073/pnas.0505494102
  • Pérez, C., Muñoz-Garay, C., Portugal, L. C., Sánchez, J., Gill, S. S., Soberón, M., & Bravo, A. (2007). Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cellular Microbiology, 9, 2931–2937. doi:10.1111/j.1462-5822.2007.01007.x
  • Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71, 255–281. doi:10.1128/MMBR.00034-06
  • Poncet, S., Anello, G., Delécluse, A., Klier, A., & Rapoport, G. (1993). Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis. Applied and Environmental Microbiology, 59, 3928–3930. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC182551/pdf/aem00040-0424.pdf
  • Popova-Butler, A., & Dean, D. H. (2009). Proteomic analysis of the mosquito Aedes aegypti midgut brush border membrane vesicles. Journal of Insect Physiology, 55, 264–272. doi:10.1016/j.jinsphys.2008.12.008
  • Rao, D. R., Mani, T. R., Rajendran, R., Joseph, A. S., Gajanana, A., & Reuben, R. (1995). Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. Journal of the American Mosquito Control Association, 11, 1–5. Retrieved from http://citebank.org/uid.php?id=103362
  • Ravoahangimalala, O., & Charles, J.-F. (1995). In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cells of Anopheles gambiae larvae (Diptera: Culicidae). FEBS Letters, 362, 111–115. doi:10.1016/0014-5793(95)00220-4
  • Regis, L., Silva-Filha, M. H. N. L., Oliveira, C. M. F. d, Rios, E. M., Silva, S. B. d., & Furtado, A. F. (1995). Integrated control measures against Culex quinquefasciatus, the vector of filariasis in Recife. Memórias do Instituto Oswaldo Cruz, 90, 115–119. doi:10.1590/S0074-02761995000100022
  • Regis, L., Silva-Filha, M. H., Nielsen-LeRoux, C., & Charles, J.-F. (2001). Bacteriological larvicides of dipteran disease vectors. Trends in Parasitology, 17, 377–380. doi:10.1016/S1471-4922(01)01953-5
  • Rodcharoen, J., Mulla, M. S., & Chaney, J. D. (1991). Microbial larvicides for the control of nuisance aquatic midges (Diptera: Chironomidae) inhabiting mesocosms and man-made lakes in California. Journal of the American Mosquito Control Association, 7, 56–62. Retrieved from http://citebank.org/uid.php?id=102967
  • Rodríguez-Almázan, C., Reyes, E. Z., Zuñiga-Navarrete, F., Muñoz-Garay, C., Gómez, I., Evans, A. M., … Soberón, M. (2012). Cadherin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes aegypti larvae. Biochemistry Journal, 443, 711–717. doi:10.1042/BJ20111579
  • Romão, T. P., de Melo Chalegre, K. D., Key, S., Ayres, C. F., Fontes de Oliveira, C. M., de-Melo-Neto, O. P., & Silva-Filha, M. H. (2006). A second independent resistance mechanism to Bacillus sphaericus binary toxin targets its alpha-glucosidase receptor in Culex quinquefasciatus. FEBS Journal, 273, 1556–1568. doi:10.1111/j.1742-4658.2006.05177.x
  • Romão, T. P., de-Melo-Neto, O. P., & Silva-Filha, M. H. (2011). The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus. FEMS Microbiology Letters, 321, 167–174. doi:10.1111/j.1574-6968.2011.02325.x
  • Saengwiman, S., Aroonkesorn, A., Dedvisitsakul, P., Sakdee, S., Leetachewa, S., Angsuthanasombat, C., & Pootanakit, K. (2011). In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Biochemical and Biophysical Research Communications, 407, 708–713. doi:10.1016/j.bbrc.2011.03.085
  • Saleh, M. S., El-Meniawi, F. A., Kelada, N. L., & Zahran, H. M. (2003). Resistance development in mosquito larvae Culex pipiens to the bacterial agent Bacillus thuringiensis var. israelensis. Journal of Applied Entomology, 127, 29–32. doi:10.1046/j.1439-0418.2003.00703.x
  • Sanitt, P., Promdonkoy, B., & Boonserm, P. (2008). Targeted mutagenesis at charged residues in Bacillus sphaericus BinA toxin affects mosquito-larvicidal activity. Current Microbiology, 57, 230–234. doi:10.1007/s00284-008-9180-2
  • Seleena, P., Lee, H. L., & Lecadet, M. M. (1995). A new serovar of Bacillus thuringiensis possessing 28a28c flagellar antigenic structure: Bacillus thuringiensis serovar jegathesan, selectively toxic against mosquito larvae. Journal of the American Mosquito Control Association, 11, 471–473. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8825511
  • Shanmugavelu, M., Rajamohan, F., Kathirvel, M., Elangovan, G., Dean, D. H., & Jayaraman, K. (1998). Functional complementation of nontoxic mutant binary toxins of Bacillus sphaericus 1593M generated by site-directed mutagenesis. Applied and Environmental Microbiology, 64, 756–759. Retrieved from http://aem.asm.org/content/64/2/756.full.pdf+html
  • Silva-Filha, M. H., Nielsen-Leroux, C., & Charles, J. F. (1997). Binding kinetics of Bacillus sphaericus binary toxin to midgut brush-border membranes of Anopheles and Culex sp. mosquito larvae. European Journal of Biochemistry, 247, 754–761. doi:10.1111/j.1432-1033.1997.00754.x
  • Silva-Filha, M. H., Nielsen-LeRoux, C., & Charles, J. F. (1999). Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae). Insect Biochemistry and Molecular Biology, 29, 711–721. doi:10.1016/S0965-1748(99)00047-8
  • Silva-Filha, M. H., Oliveira, C. M., Regis, L., Yuan, Z., Rico, C. M., & Nielsen-LeRoux, C. (2004). Two Bacillus sphaericus binary toxins share the midgut receptor binding site: implications for resistance of Culex pipiens complex (Diptera: Culicidae) larvae. FEMS Microbiology Letters, 241, 185–191. doi:10.1016/j.femsle.2004.10.018
  • Silva-Filha, M. H. N. L., Chalegre, K. D., Anastacio, D. B., Oliveira, C. M. F., Silva, S. B., Acioli, R. V., … Regis, L. (2008). Culex quinquefasciatus field populations subjected to treatment with Bacillus sphaericus did not display high resistance levels. Biological Control, 44, 227–234. doi:10.1016/j.biocontrol.2007.10.002
  • Silva Filha, M. H. N. L., & Peixoto, C. A. (2003). Immunocytochemical localization of the Bacillus sphaericus toxin components in Culex quinquefasciatus (Diptera: Culicidae) larvae midgut. Pesticide Biochemistry and Physiology, 77, 138–146. doi:10.1016/j.pestbp.2003.07.002
  • Silva-Filha, M. H. N. L., Regis, L., Nielsen-LeRoux, C., & Charles, J.-F. (1995). Low level resistance to Bacillus sphaericus in a field-treated population of Culex quinquefasciatus (Diptera: Culicidae). Journal of Economic Entomology, 88, 525–530.
  • Singer, S. (1977). Isolation and development of bacterial pathogens in vectors. In: J. D. Briggs (Ed.), Biological regulation of vectors (pp. 3–18). DHEW Publication No. (NIH) 77–1180. Bethesda, MD: National Institute of Health.
  • Singh, G. J. P., & Gill, S. S. (1988). An electron microscope study of the toxic action of Bacillus sphaericus in Culex quinquefasciatus larvae. Journal of Invertebrate Pathology, 52, 237–247. doi:10.1016/0022-2011(88)90131-0
  • Skovmand, O., Ouedraogo, T. D. A., Sanogo, E., Samuelsen, H., Toé, L. P., & Baldet, T. (2009). Impact of slow-release Bacillus sphaericus granules on mosquito populations followed in a tropical urban environment Journal of Medical Entomology, 46, 67–76. doi:10.1603/033.046.0109
  • Skovmand, O., & Sanogo, E. (1999). Experimental formulations of Bacillus sphaericus and B. thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. Journal of Medical Entomology, 36, 62–67. Retrieved from http://esa.publisher.ingentaconnect.com/content/esa/jme/1999/00000036/00000001/art00009
  • Soberón, M., Fernández, L. E., Pérez, C., Gill, S. S., & Bravo, A. (2007). Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon, 49, 597–600. doi:10.1016/j.toxicon.2006.11.008
  • Srisucharitpanit, K., Inchana, P., Rungrod, A., Promdonkoy, B., & Boonserm, P. (2012). Expression and purification of the active soluble form of Bacillus sphaericus binary toxin for structural analysis. Protein Expression and Purification, 82, 368–372. doi:10.1016/j.pep.2012.02.009
  • Srisucharitpanit, K., Yao, M., Chimnaronk, S., Promdonkoy, B., Tanaka, I., & Boonserm, P. (2013). Crystallization and preliminary X-ray crystallographic analysis of the functional form of BinB binary toxin from Bacillus sphaericus. Acta Crystallographica Section F Structural Biology Crystalization Communications, 69, 170–173. doi:10.1107/S1744309113000110
  • Tabashnik, B. E., Biggs, R. W., Fabrick, J. A., Gassmann, A. J., Dennehy, T. J., Carriere, Y., & Morin, S. (2006). High-level resistance to Bacillus thuringiensis toxin cry1Ac and cadherin genotype in pink bollworm. Journal of Economic Entomology, 99, 2125–2131. doi:10.1603/0022-0493-99.6.2125
  • Tabashnik, B. E., Carrière, Y., Dennehy, T. J., Morin, S., Sisterson, M. S., Roush, R. T., Shelton, A. M., & Zhao, J.-Z. (2003). Insect resistance to transgenic Bt crops: lessons from the laboratory and field. Journal of Economic Entomology, 96, 1031–1038. doi:10.1603/0022-0493-96.4.1031
  • Tabashnik, B. E., Finson, N., Johnson, M. W., & Moar, W. J. (1993). Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Applied Environmental Microbiology, 59, 1332–1335. Retrieved from http://aem.asm.org/content/59/5/1332.long
  • Tabashnik, B. E., Liu, Y.-B., Dennehy, T. J., Sims, M. A., Sisterson, M. S., Biggs, R. W., & Carrière, Y. (2002). Inheritance of resistance to Bt toxin crylac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 95, 1018–1026. doi:10.1603/0022-0493-95.5.1018
  • Tetreau, G., Bayyareddy, K., Jones, C. M., Stalinski, R., Riaz, M. A., Paris, M., David, J. P., Adang, M. J., & Després, L. (2012). Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genomics, 13, 248. doi:10.1186/1471-2164-13-248
  • Thanabalu, T., Hindley, J., & Berry, C. (1992). Proteolytic processing of the mosquitocidal toxin from Bacillus sphaericus SSII-1. Journal of Bacteriology, 174, 5051–5056. Retrieved from http://jb.asm.org/content/174/15/5051.long
  • Thanabalu, T., Hindley, J., Brenner, S., Oei, C., & Berry, C. (1992). Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Applied and Environmental Microbiology, 58, 905–910. Retrieved from http://aem.asm.org/content/58/3/905.long
  • Thanabalu, T., Hindley, J., Jackson-Yap, J., & Berry, C. (1991). Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. Journal of Bacteriology, 173, 2776–2785. Retrieved from http://jb.asm.org/content/173/9/2776.long
  • Thanabalu, T., & Porter, A. G. (1996). A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa. Gene, 170, 85–89. doi:10.1016/0378-1119(95)00836-5
  • Thomas, W. E., & Ellar, D. J. (1983). Mechanism of action of Bacillus thuringiensis var israelensis insecticidal delta-endotoxin. FEBS Letters, 154, 362–368. doi:10.1016/0014-5793(83)80183-5
  • Thorne, L., Garduno, F., Thompson, T., Decker, D., Zounes, M., Wild, M., … Pollock, T. J. (1986). Structural similarity between the lepidoptera- and diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. “kurstaki” and “israelensis”. Journal of Bacteriology, 166, 801–811. Retrieved from http://jb.asm.org/content/166/3/801.long
  • Townson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942–947. Retrieved from http://dx.doi.org/10.1590/S0042-96862005001200017
  • Vachon, V., Laprade, R., & Schwartz, J.-L. (2012). Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology, 111, 1–12.
  • Vadlamudi, R. K., Weber, E., Ji, I., Ji, T. H., & Bulla, L. A. Jr. (1995). Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry, 270, 5490–5494. doi:10.1074/jbc.270.10.5490
  • Valaitis, A. P., Jenkins, J. L., Lee, M. K., Dean, D. H., & Garner, K. J. (2001). Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity. Archives of Insect Biochemistry and Physiology, 46, 186–200. doi:10.1002/arch.1028
  • Van Rie, J., Jansens, S., Hofte, H., Degheele, D., & Van Mellaert, H. (1990). Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Applied and Environmental Microbiology, 56, 1378–1385. Retrieved from http://aem.asm.org/content/56/5/1378.long
  • Vasquez, M. I., Violaris, M., Hadjivassilis, A., & Wirth, M. C. (2009). Susceptibility of Culex pipiens (Diptera: Culicidae) field populations in Cyprus to conventional organic insecticides, Bacillus thuringiensis subsp. israelensis, and methoprene. Journal of Medical Entomology, 46, 881–887. Retrieved from http://dx.doi.org/10.1603/033.046.0421
  • Wei, S., Cai, Q., Cai, Y., & Yuan, Z. (2007). Lack of cross-resistance to Mtx1 from Bacillus sphaericus in B. sphaericus-resistant Culex quinquefasciatus (Diptera: Culicidae). Pest Management Science, 63, 190–193. doi:10.1002/ps.1319
  • Weiser, J. (1984). A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from northern Nigeria. Zentralbllat fur Mikrobiologie, 139, 57–60. Retrieved from http://www.sciencedirect.com/science/article/pii/S0232439384800335
  • Wickremesingue, R. S. B., & Mendis, C. L. (1980). Bacillus sphaericus spore from Sri Lanka demonstrating rapid larvicidal activity on Culex quinquefasciatus. Mosquito News, 40, 387–389.
  • Wirth, M. C. (2010). Mosquito resistance to bacterial larvicidal toxins. The Open Toxinology Journal, 3, 101–115. doi:10.2174/1875414701003010126
  • Wirth, M. C., Federici, B. A., & Walton, W. E. (2000). Cyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae). Applied and Environmental Microbiology, 66, 1093–1097.
  • Wirth, M. C., Ferrari, J. A., & Georghiou, G. P. (2001). Baseline susceptibility to bacterial insecticides in populations of Culex pipiens complex (Diptera: Culicidae) from California and from the Mediterranean Island of Cyprus. Journal of Economic Entomology, 94, 920–928.
  • Wirth, M. C., Georghiou, G. P., Malik, J. I., & Abro, G. H. (2000). Laboratory selection for resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA. Journal of Medical Entomology, 37, 534–540. Retrieved from http://dx.doi.org/10.1603/0022-2585-37.4.534
  • Wirth, M. C., Jiannino, J. A., Federici, B. A., & Walton, W. E. (2004). Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. Journal of Medical Entomology, 41, 935–941. Retrieved from http://dx.doi.org/10.1603/0022-2585-41.5.935
  • Wirth, M. C., Park, H. W., Walton, W. E., & Federici, B. A. (2005). Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Applied and Environmental Microbiology, 71, 185–189. doi:10.1128/AEM.71.1.185-189.2005
  • Wirth, M. C., Walton, W. E., & Federici, B. A. (2000). Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology, 37, 401–407. Retrieved from http://dx.doi.org/10.1603/0022-2585(2000)037[0401:CFBTRT]2.0.CO;2
  • Wirth, M. C., Walton, W. E., & Federici, B. A. (2012). Inheritance, stability, and dominance of cry resistance in Culex quinquefasciatus (Diptera: Culicidae) selected with the three cry toxins of Bacillus thuringiensis subsp. israelensis. Journal of Medical Entomology, 49, 886–894. Retrieved from http://dx.doi.org/10.1603/ME11192
  • Wirth, M. C., Yang, Y., Walton, W. E., Federici, B. A., & Berry, C. (2007). Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae. Applied and Environmental Microbiology, 73, 6066–6071. doi:10.1128/AEM.00654-07
  • Xu, X., Yu, L., & Wu, Y. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology, 71, 948–954. doi:10.1128/AEM.71.2.948-954.2005
  • Yuan, Z., Rang, C., Maroun, R. C., Juarez-Perez, V., Frutos, R., Pasteur, N., … Nielsen-Leroux, C. (2001). Identification and molecular structural prediction analysis of a toxicity determinant in the Bacillus sphaericus crystal larvicidal toxin. European Journal of Biochemistry/FEBS Journal, 268, 2751–2760. doi:10.1046/j.1432-1327.2001.02176.x
  • Yuan, Z. M., Pei, G. F., Regis, L., Nielsen-Leroux, C., & Cai, Q. X. (2003). Cross-resistance between strains of Bacillus sphaericus but not B. thuringiensis israelensis in colonies of the mosquito Culex quinquefasciatus. Medical and Veterinary Entomology, 17, 251–256. doi:10.1046/j.1365-2915.2003.00429.x
  • Yuan, Z. M., Zhang, Y. M., & Liu, E. Y. (2000). High-level field resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from Southern China. Biocontrol Science and Technology, 10, 43–51. doi:10.1080/09583150029378
  • Zhang, R., Hua, G., Andacht, T. M., & Adang, M. J. (2008). A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Biochemistry, 47, 11263–11272. doi:10.1021/bi801181g
  • Zhang, S., Cheng, H., Gao, Y., Wang, G., Liang, G., & Wu, K. (2009). Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochemistry and Molecular Biology, 39, 421–429. doi:10.1016/j.ibmb.2009.04.003
  • Zhang, W., Crickmore, N., George, Z., Xie, L., He, Y. Q., Li, Y., … Fang, X. (2012). Characterization of a new highly mosquitocidal isolate of Bacillus thuringiensis: an alternative to Bti?. Journal of Invertebrate Pathology, 109, 217–222. Retrieved from http://dx.doi.org/10.1016/j.jip.2011.11.003
  • Zhang, X., Candas, M., Griko, N. B., Taussig, R., & Bulla, L. A. Jr. (2006). A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences USA, 103, 9897–9902. doi:10.1073/pnas.0604017103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.