385
Views
24
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Evaluation of Pseudomonas aeruginosa Z5 for biocontrol of cotton seedling disease caused by Fusarium oxysporum

, &
Pages 1227-1242 | Received 21 Feb 2014, Accepted 04 Jun 2014, Published online: 08 Sep 2014

References

  • Abo-Elyousr, K. A. M., Hashem, M., & Ali, E. H. (2009). Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Protection, 28, 295–301. doi:10.1016/j.cropro.2008.11.004
  • Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth promoting rhizobacteria. Biocontrol Science and Technology, 11, 557–574. doi:10.1080/09583150120076120
  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350. doi:10.1007/s11274-011-0979-9
  • Bilal, R., Rasul, G., Arshad, M., & Malik, K. A. (1993). Attachment, colonization and proliferation of Azospirillum brasilense and Enterobacter spp. on root surfaces of grasses. World Journal of Microbiology and Biotechnology, 9, 63–69. doi:10.1007/BF00656519
  • Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Disease management (pp. 15–47). Berlin Heidelberg: Springer-Verlag.
  • Brien, M. O., & Colwall, R. R. (1987). A rapid test for chitinase activity that uses 4-methylumbelliferyl N-acetyl-beta D-Glucosamine. Applied Environmental Microbiology, 53, 1718–1720.
  • Chauhan, S., Wadhwa, K., Vasudeva, M., & Narula, N. (2012). Potential of Azotobacter spp. as biocontrol agents against Rhizoctonia solani and Fusarium oxysporum in cotton (Gossypium hirsutum), guar (Cyamopsis tetragonoloba) and tomato (Lycopersicum esculentum). Archives of Agronomy and Soil Science, 58, 1–21.
  • Compant, S., van der Heijden, M. G., & Sessitsch, A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology and Ecology, 73, 197–214.
  • Denizci, D., Kazan, E. C. A., & Erarslan, A. A. (2004). Newly isolated Bacillus clausii GMBAE42, an alkaline protease producer capable to grow under highly-alkaline conditions. Journal of Applied Microbiology, 96, 320–327. doi:10.1046/j.1365-2672.2003.02153.x
  • Dutta, S., & Podile, A. R. (2010). Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Critical Review of Microbiology, 36, 232–244. doi:10.3109/10408411003766806
  • Fang, R., Lin, J., Yao, S., Wang, Y., Wang, J., Zhou, C., … Xiao, M. (2013). Promotion of plant growth, biological control and induced systemic resistance in maize by Pseudomonas aurantiaca JD37. Annals of Microbiology, 63, 1177–1185. doi:10.1007/s13213-012-0576-7
  • Gamalero, E., Berta, G., Massa, N., Glick, B. R., & Lingua, G. (2010). Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth cucumber under salt stress conditions. Journal of Applied Microbiology, 108, 236–245. doi:10.1111/j.1365-2672.2009.04414.x
  • Gamalero, E., Lingua, G., Berta, G., & Lemanceau, P. (2003). Methods for studying root colonization by introduced beneficial bacteria. Agronomie, 23, 407–418. doi:10.1051/agro:2003014
  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 1–15. doi:10.6064/2012/963401
  • Hafeez, F. Y., Safdar, M. E., Chaudhary, A. U., & Malik, K. A. (2004). Rhizobial inoculation improves seedling emergence, nutrient uptake and growth of cotton. Australian Journal of Experimental Agriculture, 44, 1–6. doi:10.1071/EA03074
  • Hassanein, W. A., Awny, N. M., El-Mougith, A. A., & El-Dien, S. H. S. (2009). Characterization and antagonistic activities of metabolite produced by Pseudomonas aeruginosa Sha8. Journal of Applied Science Research, 5, 404–414.
  • Hofte, M., & Altier, N. (2010). Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Research in Microbiology, 161, 464–471. doi:10.1016/j.resmic.2010.04.007
  • Howell, C. R. (2002). Cotton seedling pre-emergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology, 92, 177–180. doi:10.1094/PHYTO.2002.92.2.177
  • Javed, M. S., Hanif, M., Niaz, M., & Ali, I. (2008). Impact of storage period and temperature on the pathogenic behaviour of Fusarium solani on cotton (Gossypium hirsutum L.) seeds. Mycopath, 6, 7–11.
  • Kazempour, M. N. (2004). Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistic bacteria in greenhouse and field conditions. Plant Pathology Journal, 3, 88–96. doi:10.3923/ppj.2004.88.96
  • Khare, E., & Arora, K. N. (2010). Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Current Microbiology, 61, 64–68. doi:10.1007/s00284-009-9577-6
  • Lork, H. (1948). Production of hydrocyanic acid by bacteria. Physiology Plant, 1, 142–146. doi:10.1111/j.1399-3054.1948.tb07118.x
  • Marten, P., Smalla, K., & Berg, G. (2000). Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology, 89, 463–471. doi:10.1046/j.1365-2672.2000.01136.x
  • Meon, S., & Azadeh, B. F. (2009). Molecular characterization of Pseudomonas aeruginosa UPM P3 from oil palm rhizosphere. American Journal of Applied Science, 6, 1915–1919. doi:10.3844/ajassp.2009.1915.1919
  • Minaxi, Saxena J. (2010). Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent. Mycopathologia, 170, 181–193. doi:10.1007/s11046-010-9307-4
  • Montealgro, J. R., Reyes, R., Perez, L. M., Herrera, R., Silva, P., & Besoain, X. (2003). Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 6, 115–127.
  • Naureen, Z., Hafeez, F. Y., & Roberts, M. (2011). Biological control of sheath blight disease of rice by siderophore producing rhizobacterial strains and their role in efficient mobilisation of micronutrients from soil. Current Opinion in Biotechnology, 22(Suppl), S48–S48. ISSN 0958-1669. doi:10.1016/j.copbio.2011.05.124
  • Pane, C., Villecco, D., Campanile, F., & Zaccardelli, M. (2012). Novel strains of Bacillus, isolated from compost and compost-amended soils, as biological control agents against soil-borne phytopathogenic fungi. Biocontrol Science and Technology, 22, 1373–1388. doi:10.1080/09583157.2012.729143
  • Qing, F., Shiping, T., Haibo, L., & Yong, X. (2002). Production of β-1,3-glucanase and chitinase of two biocontrol agents and their possible modes of action. Chinese Science Bulletin, 47, 292–296. doi:10.1360/02tb9070
  • Ramadasappa, S., Ashwani, K. R., Jaat, R. S., Singh, A., & Rai, R. (2012). Isolation and screening of phlD+ plant growth promoting rhizobacteria antagonistic to Ralstonia solanacearum. World Journal of Microbiology and Biotechnology, 28, 1681–1690. doi:10.1007/s11274-011-0975-0
  • Sadeghi, A., Karimi, E., Dahaji, P. A., Javid, M. G., Dalvand, Y., & Askari, H. (2012). Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology and Biotechnology, 28, 1503–1509. doi:10.1007/s11274-011-0952-7
  • Santoyo, G., Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22, 855–872. doi:10.1080/09583157.2012.694413
  • Schmidt, E. L. (1974). Qualitative autecological study of microorganisms in soil by immunofluorescence. Soil Science, 118, 141–149. doi:10.1097/00010694-197409000-00002
  • Silva, Vasconcellos F., de Oliveira, A., Lopes-Santos, L., Beranger, O., Cely, T. M., Simionato, A., … Andrade, G. (2014). Evaluation of antibiotic activity produced by Pseudomonas aeruginosa LV strain against Xanthomonas arboricola pv. pruni. Agricultural Sciences, 5, 71–76. doi:10.4236/as.2014.51008
  • Somasegaran, P., & Hoben, H. J. (1994). Producing and applying fluorescent antibodies. In Hand book for rhizobia: Methods in legume-rhizobium technology (pp. 120–130). New York: Springer-Verlag.
  • Tariq, M., Yasmin, S., & Hafeez, F. Y. (2010). Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology, 41, 439–451. doi:10.1590/S1517-83822010000200026
  • Wang, C., Wang, D., & Zhou, Q. (2004). Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Canadian Journal of Microbiology, 50, 475–481. doi:10.1139/w04-040
  • Weller, D. M. (2007). Pseudomonas biocontrol agents of soil borne pathogens: Looking back over 30 years. Phytopathology, 97, 250–256. doi:10.1094/PHYTO-97-2-0250
  • Xue, Q. Y., Li, J. Q., Zheng, Y., Ding, X. Y., & Guo, J. H. (2013). Screening tomato-associated bacteria for biological control of grey mold on tomato. Biocontrol Science and Technology, 23, 245–259. doi:10.1080/09583157.2012.755612
  • Yasmin, S., Hafeez, F. Y., Schmid, M., & Hartmann, A. (2013). Plant-beneficial rhizobacteria for sustainable increased yield of cotton with reduced level of chemical fertilizers. Pakistan Journal of Botany, 45, 655–662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.