475
Views
36
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Evaluating the promise of Trichoderma and Anabaena based biofilms as multifunctional agents in Macrophomina phaseolina-infected cotton crop

, , , , &
Pages 656-670 | Received 12 Sep 2014, Accepted 07 Jan 2015, Published online: 12 Mar 2015

References

  • Abdel-Mongy, A. A. (2007). Effect of Trichoderma isolates, delivery systems and host genotype on biological control of cotton seedlings disease. Journal of Plant Protection Research, 47, 339–356.
  • Adenkunle, A.T., Cardwell, K. F., Lorini, F.D.A., & Ikotum, T. (2001). Seed treatment with Trichoderma species for control of damping off of cowpea caused by Macrophomina phaseolina. Biocontrol Science and Technology, 11, 449–457.
  • Ahmed, M., Stal, L., & Hasnain, S. (2011). DTAF: An efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM). Journal of Industrial Microbiology & Biotechnology, 38, 249–255. doi:10.1007/s10295-010-0820-8
  • Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134, 307–319. doi:10.1104/pp.103.028712
  • Chaparro, J., Sheflin, A., Manter, D., & Vivanco, J. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 48, 489–499. doi:10.1007/s00374-012-0691-4
  • Chaudhary, V., Prasanna, R., Nain, L., Dubey, S. C., Gupta, V., Singh, R., … Bhatnagar, A. K. (2012). Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World Journal of Microbiology and Biotechnology, 28, 3301–3310. doi:10.1007/s11274-012-1141-z
  • Chen, C., Belanger, R. R., Benhamou, N., & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56, 13–23. doi:10.1006/pmpp.1999.0243
  • Cotton Corporation of India. (2010). Cotton Corporation of India. Retrieved from http://www.cotcorp.gov.in.
  • Döbereiner, J. (1997). Biological nitrogen fixation in the tropics: Social and economic contributions. Soil Biology and Biochemistry, 29, 771–774. doi:10.1016/S0038-0717(96)00226-X
  • Duffy, B. K., Simon, A., & Weller, D. (1996). Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology, 86, 188–194. doi:10.1094/Phyto-86-188
  • Dukare, A. S., Prasanna, R., Chandra Dubey, S., Nain, L., Chaudhary, V., Singh, R., & Saxena, A. K. (2011). Evaluating novel microbe amended composts as biocontrol agents in tomato. Crop Protection, 30, 436–442. doi:10.1016/j.cropro.2010.12.017
  • Ebrahim‐Nesbat, F., & Slusarenko, A. (1983). Ultrastructure of the interaction of cells of Pseudomonas phaseolicola with cell walls of a resistant and susceptible bean cultivar. Journal of Phytopathology, 108, 148–159. doi:10.1111/j.1439-0434.1983.tb00574.x
  • Green, M. B., LeBaron, H. M., & Moberg, W. K. (Eds.) (1990). Managing resistance to agrochemicals: From fundamental research to practical strategies (p. 496). Washington, DC: American Chemical Society.
  • Haggag, W. M., & Timmusk, S. (2008). Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology, 104, 961–969. doi:10.1111/j.1365-2672.2007.03611.x
  • Heydari, A., & Gharedaghli, A. (2007). Integrated pest management on cotton in Asia and North Africa. Tehran: INCANA Press.
  • Howell, C. R., DeVay, J. E., Garber, R. H., & Batson, W. E. (1997). Field control of cotton seedling diseases with Trichoderma virens in combination with fungicide seed treatments. Journal of Cotton Science, 1, 15–20.
  • Humphries, E. C. (1956). Mineral components and ash analysis. In K. Paech & M. V. Tracey (Eds.), Moderne Methoden der Pflanzenanalyse [Modern methods of plant analysis] (pp. 468–502). Berlin, Heidelberg: Springer.
  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India.
  • Jayasinghearachchi, H. S., & Seneviratne, G. (2004). A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biology and Fertility of Soils, 40, 432–434. doi:10.1007/s00374-004-0796-5
  • Jetiyanon, K., & Kloepper, J. W. (2002). Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 24, 285–291. doi:10.1016/S1049-9644(02)00022-1
  • Karthikeyan, N., Prasanna, R., Nain, L., & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43, 23–30. doi:10.1016/j.ejsobi.2006.11.001
  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. D. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51. doi:10.1007/s12223-009-0007-8
  • Kloepper, J. W., Zablokovicz, R. M., Tipping, E. M., & Lifshitz, R. (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers. In D. L. Keister & P. B. Cregan (Eds.), The rhizosphere and plant growth (pp. 315–326). The Netherlands: Kluwer Academic Publishers.
  • Mandal, B., Vlek, P. L. G., & Mandal, L. N. (1999). Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biology and Fertility of Soils, 28, 329–342. doi:10.1007/s003740050501
  • Morsy, E. M., Abdel-Kawi, K., & Khalil, M. (2009). Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egyptian Journal of Phytopathology, 37, 47–57.
  • Nain, L., Rana, A., Joshi, M., Jadhav, S. D., Kumar, D., Shivay, Y., … Prasanna, R. (2010). Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant and Soil, 331, 217–230. doi:10.1007/s11104-009-0247-z
  • Nakkeeran, S., Renukadevi, P., & Marimuthu, T. (2005). Antagonistic potentiality of Trichoderma viride and assessment of its efficacy for the management of cotton root rot. Archives of Phytopathology and Plant Protection, 38, 209–225. doi:10.1080/03235400500094472
  • Nunan, N., Morgan, M. A., & Herlihy, M. (1998). Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biology and Biochemistry, 30, 1599–1603. doi:10.1016/S0038-0717(97)00226-5
  • Paulitz, T. C., & Schroeder, K. L. (2005). A new method for the quantification of Rhizoctonia solani and R. oryzae from soil. Plant Disease, 89, 767–772. doi:10.1094/pd-89-0767
  • Prasanna, R., Chaudhary, V., Gupta, V., Babu, S., Kumar, A., Singh, R., ... Nain, L. (2013). Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. European Journal of Plant Pathology, 136, 337–353. doi:10.1007/s10658-013-0167-x
  • Prasanna, R., Jaiswal, P., Nayak, S., Sood, A., & Kaushik, B. (2009). Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian Journal of Microbiology, 49, 89–97. doi:10.1007/s12088-009-0009-x
  • Prasanna, R., Joshi, M., Rana, A., Shivay, Y., & Nain, L. (2012). Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World Journal of Microbiology and Biotechnology, 28, 1223–1235. doi:10.1007/s11274-011-0926-9
  • Prasanna, R., Kumar, A., Babu, S., Chawla, G., Chaudhary, V., Singh, S., ... Saxena, A. K. (2013). Deciphering the biochemical spectrum of novel cyanobacterium-based biofilms for use as inoculants. Biological Agriculture & Horticulture, 29, 145–158. doi:10.1080/01448765.2013.790303
  • Prasanna, R., Nain, L., Tripathi, R., Gupta, V., Chaudhary, V., Middha, S., ... Kaushik, B. D. (2008). Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria–possible role of hydrolytic enzymes. Journal of Basic Microbiology, 48, 186–194. doi:10.1002/jobm.200700199
  • Prasanna, R., Pattnaik, S., Sugitha, T. K., Nain, L., & Saxena, A. (2011). Development of cyanobacterium-based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiologica, 56, 49–58. doi:10.1007/s12223-011-0013-5
  • Prasanna, R., Triveni, S., Bidyarani, N., Babu, S., Yadav, K., Adak, … Saxena, A. K. (2014). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 60, 349–366. doi:10.1080/03650340.2013.792407
  • Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88, 1158–1164. doi:10.1094/phyto.1998.88.11.1158
  • Rippka, R., Deruelles, J., Waterbury, B., Herdman, M., & Stanier, Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61. doi:10.1099/00221287-111-1-1
  • Scala, F., Raio, A., Zoina, A., Lorito, M., Chincholkar, S., & Mukerji, K. (2007). Biological control of fruit and vegetable diseases with fungal and bacterial antagonists: Trichoderma and Agrobacterium. In S. B. Chincholkar & K. G. Mukerji (Eds.), Biological control of plant diseases (pp. 150–190). Binghamton: Howorth Press.
  • Seneviratne, G., Thilakaratne, R., Jayasekara, A., Seneviratne, K., Padmathilake, K. R. E., & De Silva, M. (2009). Developing beneficial microbial biofilms on roots of Non legumes: A novel biofertilizing technique. In M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial strategies for crop improvement (pp. 51–62). Berlin, Heidelberg: Springer.
  • Shanmugaiah, V. (2007). Biocontrol potential of Phenazine –1– carboxamide producing plant growth promoting rhizobacterium Pseudomonas aeruginosa MML2212 against sheath blight disease of rice. (Ph.D. thesis). Chennai, India: University of Madras.
  • Subba Rao, N. S. (1999). Soil microbiology. (4th ed.). New Delhi: Oxford and IBH.
  • Triveni, S., Prasanna, R., & Saxena, A. K. (2013). Optimization of conditions for in vitro development of Trichoderma viride based biofilms as potential inoculants. Folia Microbiologica, 57, 431–437.
  • Triveni, S., Prasanna, R., Shukla, L., & Saxena, A. (2013). Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Annals of Microbiology, 63, 1147–1156. doi:10.1007/s13213-012-0573-x
  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37, 1–20. http://dx.doi.org/10.1016/j.bej.2007.05.012
  • Watkins, G. (1981). Compendium of cotton diseases: St. Paul, MN: American Phytopathological Society.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.