326
Views
11
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Bacillus thuringiensis C25 suppresses popcorn disease caused by Ciboria shiraiana in mulberry (Morus australis L.)

&
Pages 145-162 | Received 03 Apr 2015, Accepted 07 Aug 2015, Published online: 04 Nov 2015

References

  • Ahn, I., Maeng, W. Y., Lee, I. E., Kim, S. H., Kim, W. S., You, J. W., … Kim, B. Y. (2013). Study on eco-friendly control effect of natural plant extract mixtures on mulberry popcorn disease and mulberry sucker. Korean Journal of Environmental Agriculture, 32, 338–342. doi:10.5338/KJEA.2013.32.4.338
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2
  • Arora, N., Ahmed, T., Rajagopal, R., & Bhatnagar, R. K. (2003). A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochemical and Biophysical Research Communications, 307, 620–625. doi:10.1016/S0006-291X(03)01228-2
  • Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62, 4081–4085.
  • Bae, H. J., Kim, H. C., & Kim, T. C. (2010). Damage mitigation effect of popcorn disease (Sclerotinia shiraiana Hennings) in mulberry (Morus nigra L.) according to soil management method. Korean Journal of Horticultural Science and Technology, 28, 88–93.
  • Bargabus, R. L., Zidack, N. K., Sherwood, J. W., & Jacobsen, B. J. (2002). Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61, 289–298. doi:10.1006/pmpp.2003.0443
  • Bargabus, R. L., Zidack, N. K., Sherwood, J. W., & Jacobsen, B. J. (2004). Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control, 30, 342–350. doi:10.1016/j.biocontrol.2003.11.005
  • Chen, T. W., & Wu, W. S. (1999). Biological control of carrot black rot. Journal of Phytopathology, 147, 99–104. doi: 10.1111/j.1439-0434.1999.tb03814.x
  • Duijff, B. J., Gianinazzi-Pearson, V., & Lemanceau, P. (1997). Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens WCS417r. New Phytologist, 135, 325–334. doi:10.1046/j.1469-8137.1997.00646.x
  • Ednar, G. W., Cames, M. M., Carmen, N. M., Chandroo, L. K., & John, H. (2002). Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. European Journal of Plant Pathology, 108, 317–325. doi: 10.1023/A:1015671031906
  • Gray, E., & Gray, R. E. (1987). Observations on popcorn disease of mulberry in South Central Kentucky. Castanea, 52, 47–51.
  • Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Review Microbiology, 3, 307–319. doi:10.1038/nrmicro1129
  • Harris, A. R., & Adkins, P. G. (1999). Versatility of fungal and bacterial isolates for biological control of damping-off disease caused by Rhizoctonia solani and Pythium spp. Biological Control, 15, 10–18. doi:10.1006/bcon.1999.0694
  • Hong, S. K., Kim, W. G., Sung, G. B., & Nam, S. H. (2007a). Identification and distribution of two fungal species causing sclerotial disease on mulberry fruits in Korea. Mycobiology, 35, 87–90. doi: 10.4489/MYCO.2007.35.2.087
  • Hong, S. K., Kim, W. G., Sung, G. B., Nam, S. H., & Kim, J. S. (2007b). Aspects of popcorn disease occurrence on mulberry fruits in Korea. Research in Plant Disease, 13, 131–136. doi:10.5423/RPD.2007.13.3.131
  • Hu, J. H., Cai, Y. X., Zhou, S. J., Zhang, J. C., Zhang, H. L., Chen, Y. B., … Ying, G. M. (2011). Diversity of mulberry sclerotiniose pathogen and ITS analysis. Journal of Ningbo University (Natural Science & Engineering Edition), 24, 20–23.
  • Hua, L. R., Chun, Z. A., Yun, J. X., Wu, D. Y., Bo, W. W., Ling, W. X., & De, Y. M. (2011). A primary experiment on the control of mulberry fruit sclerotiniosis using herbicide glyphosate. Science of Sericulture, 37, 907–913.
  • Hua, L. R., Yu, D. Z., Ling, W. X., Bo, W. W., Chun, Z. A., Jun, L., & De, Y. M. (2013). An experiment on killing mulberry fruit sclerotiniosis ascospores with the infrared high-temperature thermistor. Journal of Southwest University (Natural Science), 35, 10–14.
  • Iavicoli, A., Boutet, E., Buchala, A., & Métraux, J. P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interaction, 16, 851–858. doi: 10.1094/MPMI.2003.16.10.851
  • Kang, Z., & Buchenauer, H. (2000). Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycological Research, 104, 1083–1093. doi: 10.1017/S0953756200002495
  • Kapley, A., Siddiqui, S. N., & Purohit, H. J. (2007). A Bacillus subtilis strain HPC248 from an effluent treatment plant with antimicrobial activity. World Journal of Microbiology and Biotechnology, 23, 879–882. doi: 10.1007/s11274-006-9296-0
  • Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., … Chun, J. (2012). Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721. doi:10.1099/ijs.0.038075-0
  • Kishi, K. (1998). Plant diseases in Japan. Tokyo: Zenkoku-Nouson-Kyouiku-Kyoukai.
  • Kohn, L. M., & Nagasawa, E. (1984). The genus Scleromitrula (Sclerotiniaceae), Episclerotium gen. nov. (Leotiaceae) and allied stipitate-capitate species with reduced ectal excipula. Transaction of the Mycological Society of Japan, 25, 127–148.
  • Kraus, J., & Loper, J. E. (1995). Characterization of genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied and Environmental Microbiology, 61, 849–854.
  • Krebs, B., Hoeding, B., Kubart, S. M., Workie, A., Junge, H., Schmiedeknecht, G., … Hevesi, M. (1998). Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. Journal of Plant Diseases and Protection, 105, 181–197.
  • Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., … Jacques, P. (2005). Mycosubtilin over production by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584. doi:10.1128/AEM.71.8.4577-4584.2005
  • Leeman, M., VanPelt, J. A., DenOuden, F. M., Heinsbroek, M., Bakker, P. A. H. M., & Schippers, B. (1995a). Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. European Journal of Plant Pathology, 101, 655–664. doi: 10.1007/BF01874869
  • Leeman, M., VanPelt, J. A., Hendrickx, M. J., Scheffer, R. J., Bakker, P. A. H. M., & Schippers, B. (1995b). Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology, 85, 1301–1305. doi: 10.1094/Phyto-85-1301
  • Li, X. Q., Wei, J. Z., Tan, A., & Aroian, R. V. (2007). Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal, 5, 455–464. doi:10.1111/j.1467-7652.2007.00257.x
  • Liang, W. G. (2009). Diversity investigation of mulberry sclerotiniose pathogen. Journal of Fungal Research, 7, 189–192.
  • Liu, M., Cai, Q. X., Liu, H. Z., Zhang, B. H., Yan, J. P., & Yuan, Z. M. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. Journal of Applied Microbiology, 93, 374–379. doi: 10.1046/j.1365-2672.2002.01693.x
  • Marten, P., Smalla, K., & Berg, G. (2000). Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology, 89, 463–471. doi: 10.1046/j.1365-2672.2000.01136.x
  • Maurhofer, M., Hase, C., Meuwly, P., Métraux, J. P., & Défago, G. (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology, 84, 139–146. doi: 10.1094/Phyto-84-139
  • Meziane, H., Sluis, I. V. D., Loon, L. C. V., Höfte, M., & Bakker, P. A. H. M. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 6, 177–185. doi:10.1111/j.1364-3703.2005.00276.x
  • Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., & Thonart, P. (2005). Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology, 67, 692–698. doi:10.1007/s00253-004-1741-0
  • Ongena, M., Duby, F., Rossignol, F., Fauconnier, M. L., Dommes, J., & Thonart, P. (2004). Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interactions, 17, 1009–1018. doi:10.1094/MPMI.2004.17.9.1009
  • Pleban, S., Ingel, F., & Chet, I. (1995). Control of Rhizoctonia solani and Sclerotium rolfsii in the greenhouse using endophytic Bacillus spp. European Journal of Plant Pathology, 101, 665–672. doi: 10.1007/BF01874870
  • Press, C. M., Loper, J. E., & Kloepper, J. W. (2001). Role of iron in rhizobacteria mediated induced systemic resistance of cucumber. Phytopathology, 91, 593–598. doi: 10.1094/PHYTO.2001.91.6.593
  • Raddadi, N., Belaouis, A., Tamagnini, I., Hansen, B. M., Hendriksen, N. B., Boudabous, A., … Daffonchio, D. (2009). Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. Journal of Basic Microbiology, 49, 293–303. doi:10.1002/jobm.200800182
  • Raddadi, N., Cherif, A., Ouzari, H., Marzorati, M., Brusetti, L., Boudabous, A., & Daffonchio, D. (2007). Bacillus thuringiensis beyond insect biocontrol: Plant growth promotion and biosafety of polyvalent strains. Annals of Microbiology, 57, 481–494. doi: 10.1007/BF03175344
  • Radheshyam, S., & Sumangala, B. (2011). Molecular cloning of endochitinase 33 (ECH33) gene from Trichoderma harzanium. African Journal of Biotechnology, 10, 12156–12163. doi:10.5897/AJB11.957
  • Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88, 1158–1164. doi: 10.1094/PHYTO.1998.88.11.1158
  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026. doi: 10.1104/pp.103.026583
  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
  • Shrestha, A., Sultana, R., Kim, K. M., Chae, J. C., & Lee, K. J. (2015). Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. European Journal of Plant Pathology, 142, 577–589. doi:10.1007/s10658-015-0636-5
  • Siddiqui, I. A., Haas, D., & Heeb, S. (2005). Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71, 5646–5649. doi:10.1128/AEM.71.9.5646-5649.2005
  • Siegler, E. A., & Jenkins, A. E. (1923). Sclerotinia carunculoides, the cause of a serious disease of the mulberry (Morus alba). Journal of Agricultural Research, 23, 833–836.
  • Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857. doi: 10.1111/j.1365-2958.2005.04587.x
  • Sultana, R., Ju, H. J., Chae, J. C., Kim, K. M., & Lee, K. J. (2013). Identification of Ciboria carunculoides RS103V, a fungus causing popcorn disease on mulberry fruits in Korea. Research in Plant Disease, 19, 308–312. doi:10.5423/RPD.2013.19.4.308
  • Szczech, M., & Shoda, M. (2004). Biocontrol of rhizoctonia damping-off of tomato by Bacillus subtilis combined with Burkholderia cepacia. Journal of Phytopathology, 152, 549–556. doi: 10.1111/j.1439-0434.2004.00894.x
  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729. doi:10.1093/molbev/mst197
  • Theis, T., & Stahl, U. (2004). Antifungal protein: Target, mechanism and prospective applications. Cellular and Molecular Life Sciences, 61, 437–455. doi:10.1007/s00018-003-3231-4
  • Touŕe, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96, 1151–1160. doi: 10.1111/j.1365-2672.2004.02252.x
  • VanPeer, R., & Schippers, B. (1992). Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherlands Journal of Plant Pathology, 98, 129–139. doi: 10.1007/BF01996325
  • VanWees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van ‘tWestende, Y. A. M., Hartog, F., & VanLoon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interaction, 10, 716–724. doi: 10.1094/MPMI.1997.10.6.716
  • Walsh, U. F., Morrissey, J. P., & ÓGara, F. (2001). Pseudomonas for biocontrol of phytopathogens: From functional genomics to commercial exploitation. Current Opinion in Biotechnology, 12, 289–295. doi: 10.1016/S0958-1669(00)00212-3
  • Whetzel, H. H., & Wolf, F. A. (1945a). Ciboria shiraiana (Henn.) Whetzel. Mycologia, 37, 489.
  • Whetzel, H. H., & Wolf, F. A. (1945b). The cup fungus, Ciboria carunculoides, pathogenic on mulberry fruits. Mycologia, 37, 476–491. doi: 10.2307/3754633
  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press.
  • Xue, A. G., Voldeng, H. D., Savard, M. E., & Fedak, G. (2009). Biological management of Fusarium head blight and mycotoxin contamination in wheat. World Mycotoxin Journal, 2, 193–201. doi: 10.3920/WMJ2008.1121
  • Yang, S. M. (1959). An investigation on the host range and some ecological aspects of the Sclerotinia disease of rape plants. Acta Phytopathologica Sinica, 5, 111–122.
  • Ye, M., Kuang, Z., Zhao, X., Yang, Q., Li, Q., Xiao, Y., … Luo, G. (2014). Screening of fungicide to control Ciboria carunculoides under laboratory conditions. Pakistan Journal of Zoology, 46, 53–59.
  • Zhang, K. Y., & An, W. F. (2012). A review on pathogens of mulberry fruit sclerotiniosis and its control technology. Science of Sericulture, 38, 1099–1104.
  • Zhou, X., Lu, Z., Lv, F., Zhao, H., Wang, Y., & Bie, X. (2011). Antagonistic action of Bacillus subtilis strain fmbj on the postharvest pathogen Rhizopus stolonifer. Journal of Food Science, 76, M254–M259. doi: 10.1111/j.1750-3841.2011.02160.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.