294
Views
7
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Biochemical characteristics of Trichoderma atroviride associated with conidium fitness for biological control

, , , &
Pages 189-205 | Received 04 Jul 2015, Accepted 20 Aug 2015, Published online: 04 Nov 2015

References

  • Agosin, E., & Aguilera, J. M. (1998). Industrial production of active propagules of Trichoderma for agricultural uses. In G. E. Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium: Enzymes, biological control, and commercial applications (Vol. 2, pp. 205–227). London: Taylor & Francis.
  • Agosin, E., Volpe, D., Munoz, G., San Martin, R., & Crawford, A. (1997). Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World Journal of Microbiology and Biotechnology, 13, 225–232. doi: 10.1023/A:1018502217083
  • Ando, A., Ogawa, J., Kishino, S., Ito, T., Shirasaka, N., Sakuradani, E., … Shimizu, S. (2009). Fatty acid desaturation and elongation reactions of Trichoderma sp. 1-OH-2-3. Journal of the American Oil Chemists’ Society, 86, 227–233. doi: 10.1007/s11746-008-1339-2
  • Bae, H., Sicher, R. C., Kim, M. S., Kim, S.-H., Strem, M. D., Melnick, R. L., … Bailey, B. A. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295. doi: 10.1093/jxb/erp165
  • Barbosa-Cánovas, G. V., Fontana, Jr, A. J., Schmidt, S. J., & Labuza, T. P. (Eds.). (2008). Water activity in foods: Fundamentals and applications (2nd ed. Vol. 13). Iowa, USA: Blackwell Publishing and the Institute of Food Technologists.
  • Bonaterra, A., Camps, J., & Montesinos, E. (2005). Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS Microbiology Letters, 250, 1–8. doi: 10.1016/j.femsle.2005.06.028
  • Brown, A. (1978). Compatible solutes and extreme water stress in eukaryotic micro-organisms. In J. G. M. Anthony & H. Rose (Eds.), Advances in microbial physiology (Vol. 17, pp. 181–242). London: Academic Press.
  • Chambers, R. E., & Clamp, J. R. (1971). An assessment of methanolysis and other factors used in the analysis of carbohydrate-containing materials. Biochemical Journal, 125, 1009–1018. doi: 10.1042/bj1251009
  • Chesters, C., & Peberdy, J. (1965). Nutritional factors in relation to growth and fat synthesis in Mortierella vinacea. Journal of General Microbiology, 41, 127–134. doi: 10.1099/00221287-41-1-127
  • Chirife, J., Favetto, G., & Fontán, C. F. (1984). Microbial growth at reduced water activities: Some physicochemical properties of compatible solutes. Journal of Applied Bacteriology, 56, 259–268. doi: 10.1111/j.1365-2672.1984.tb01346.x
  • Daryaei, A. (2014). Conidium ‘fitness’ in Trichoderma (PhD thesis). Lincoln University. Retrieved from http://hdl.handle.net/10182/6493
  • Daryaei, A., Jones, E. E., Glare, T. R., Falloon, R. E. (2015). Biological fitness of Trichoderma atroviride during long term storage, after production in different culture conditions. Biocontrol Science and Technology. doi:10.1080/09583157.2015.1077929
  • Dijksterhuis, J., & de Vries, R. (2006). Compatible solutes and fungal development. Biochemical Journal, 399, e3–e5. doi: 10.1042/BJ20061229
  • Duan, C.-H., Riley, M., & Jeffers, S. (2011). Effects of growth medium, incubation temperature, and mycelium age on production of five major fatty acids by six species of Phytophthora. Archives of Phytopathology and Plant Protection, 44, 142–157. doi: 10.1080/03235400902952145
  • Empadinhas, N., & da Costa, M. (2008). Osmoadaptation mechanisms in prokaryotes: Distribution of compatible solutes. International Microbiology, 11, 151–161.
  • Folch, J., Lees, M., & Sloane-Stanley, G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226, 497–509.
  • Friesen, T., Hill, G., Pugsley, T., Holloway, G., & Zimmerman, D. (2005). Experimental determination of viability loss of Penicillium bilaiae conidia during convective air-drying. Applied Microbiology and Biotechnology, 68, 397–404. doi: 10.1007/s00253-004-1866-1
  • Hallsworth, J. E., & Magan, N. (1994). Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology, 140, 2705–2713. doi: 10.1099/00221287-140-10-2705
  • Hallsworth, J. E., & Magan, N. (1995). Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology, 141, 1109–1115. doi: 10.1099/13500872-141-5-1109
  • Hallsworth, J. E., & Magan, N. (1996). Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Applied and Environmental Microbiology, 62, 2435–2442.
  • Hjeljord, L. G., & Tronsmo, A. (2003). Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology, 93, 1593–1598. doi: 10.1094/PHYTO.2003.93.12.1593
  • Hohmann, S., Bill, R. M., Kayingo, G., & Prior, B. A. (2000). Microbial MIP channels. Trends in Microbiology, 8, 33–38. doi: 10.1016/S0966-842X(99)01645-5
  • Hong, T., Jenkins, N., & Ellis, R. (2000). The effects of duration of development and drying regime on the longevity of conidia of Metarhizium flavoviride. Mycological Research, 104, 662–665. doi: 10.1017/S0953756299001872
  • Hottiger, T., Boller, T., & Wiemken, A. (1987). Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Letters, 220, 113–115. doi: 10.1016/0014-5793(87)80886-4
  • Hounsa, C.-G., Brandt, E. V., Thevelein, J., Hohmann, S., & Prior, B. A. (1998). Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 144, 671–680. doi: 10.1099/00221287-144-3-671
  • Islam, M. N., Rahman, M. M., Firoz, M. J., Das, A. K., & Amin, M. W. (2007). Influence of temperature and packing materials on shelf life of mass cultured Trichoderma at storage condition. International Journal Sustainable Crop Production, 2, 01–03.
  • Jackson, M. A. (1997). Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. Journal of Industrial Microbiology and Biotechnology, 19, 180–187. doi: 10.1038/sj.jim.2900426
  • Jennings, D. B., Daub, M. E., Pharr, D. M., & Williamson, J. D. (2002). Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol secreting fungal pathogen Alternaria alternata. The Plant Journal, 32, 41–49. doi: 10.1046/j.1365-313X.2001.01399.x
  • Jin, X., & Custis, D. (2011). Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control, 56, 202–208. doi: 10.1016/j.biocontrol.2010.11.008
  • Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh, H. B. (2014). Unravelling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98, 533–544. doi: 10.1007/s00253-013-5344-5
  • Kets, E., Teunissen, P., & de Bont, J. (1996). Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Applied and Environmental Microbiology, 62, 259–261.
  • Kets, E. P., & de Bont, J. A. (1994). Protective effect of betaine on survival of Lactobacillus plantarum subjected to drying. FEMS Microbiology Letters, 116, 251–255. doi: 10.1111/j.1574-6968.1994.tb06711.x
  • Laurens, L. M., Quinn, M., Van Wychen, S., Templeton, D. W., & Wolfrum, E. J. (2012). Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Analytical and Bioanalytical Chemistry, 403, 167–178. doi: 10.1007/s00216-012-5814-0
  • Lepage, G., & Roy, C. C. (1986). Direct transesterification of all classes of lipids in a one-step reaction. The Journal of Lipid Research, 27, 114–120.
  • Levin, R. A. (1972). Effect of cultural conditions on the fatty acid composition of Thiobacillus novellus. Journal of Bacteriology, 112, 903–909.
  • Luyten, K., Albertyn, J., Skibbe, W. F., Prior, B., Ramos, J., Thevelein, J., & Hohmann, S. (1995). Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. The EMBO Journal, 14, 1360–1371.
  • Mandels, G. R., & Maguire, A. (1972). Endogenous metabolism of fungus spores stimulation by physical and chemical means. Plant Physiology, 50, 425–431. doi: 10.1104/pp.50.4.425
  • May, H. E., & McCay, P. B. (1968). Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids II. Enzymic properties and stoichiometry. Journal of Biological Chemistry, 243, 2296–2305.
  • Moore, D., Langewald, J., & Obognon, F. (1997). Effects of rehydration on the conidial viability of Metarhizium flavoviride mycopesticide formulations. Biocontrol Science and Technology, 7, 87–94. doi: 10.1080/09583159731072
  • Mowri, H.-o., Nojima, S., & Inoue, K. (1984). Effect of lipid composition of liposomes on their sensitivity to peroxidation. Journal of Biochemistry, 95, 551–558.
  • Needleman, P., Jakschik, B., Morrison, A., & Lefkowith, J. (1986). Arachidonic acid metabolism. Annual Review of Biochemistry, 55, 69–102. doi: 10.1146/annurev.bi.55.070186.000441
  • Pedreschi, F., Aguilera, J., Agosin, E., & San Martin, R. (1997). Induction of trehalose in spores of the biocontrol agent Trichoderma harzianum. Bioprocess Engineering, 17, 317–322.
  • Prill, E. A., Wenck, P. R., & Peterson, W. H. (1935). The chemistry of mould tissue: Factors influencing the amount and nature of the fat produced by Aspergillus fischeri1. Biochemical Journal, 29, 21–33. doi: 10.1042/bj0290021
  • Rustan, A. C., & Drevon, C. A. (2005). Fatty acids: Structures and properties. Encyclopedia of Life Sciences. doi:10.1038/npg.els.0003894
  • Saville, D. J. (1990). Multiple comparison procedures: The practical solution. The American Statistician, 44, 174–180.
  • Serrano-Carreón, L., Hathout, Y., Bensoussan, M., & Belin, J. M. (1992). Lipid accumulation in Trichoderma species. FEMS Microbiology Letters, 93, 181–187. doi: 10.1111/j.1574-6968.1992.tb05087.x
  • Shih, C., & Marth, E. (1974). Some cultural conditions that control biosynthesis of lipid and aflatoxin by Aspergillus parasiticus. Applied Microbiology, 27, 452–456.
  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28, 1057–1060. doi: 10.1016/0031-9422(89)80182-7
  • Sumner, J., Morgan, E., & Evans, H. (1969). The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales. Canadian Journal of Microbiology, 15, 515–520. doi: 10.1139/m69-089
  • Tang, X. M., Kayingo, G., & Prior, B. A. (2005). Functional analysis of the Zygosaccharomyces rouxii Fps1p homologue. Yeast, 22, 571–581. doi: 10.1002/yea.1232
  • Teixidó, N., Viñas, I., Usall, J., & Magan, N. (1998). Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycological Research, 102, 1409–1417. doi: 10.1017/S0953756298006716
  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37, 1–20. doi: 10.1016/j.bej.2007.05.012
  • Voegele, R. T., Hahn, M., Lohaus, G., Link, T., Heiser, I., & Mendgen, K. (2005). Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiology, 137, 190–198. doi: 10.1104/pp.104.051839
  • Ward, G. E., Lockwood, L. B., May, O. E., & Herrick, H. T. (1935). Production of fat from glucose by molds: Cultivation of Penicillium javanicum van Beijma in large-scale laboratory apparatus. Industrial & Engineering Chemistry, 27, 318–322. doi: 10.1021/ie50303a017
  • Weete, J. D. (1980). Lipid biochemistry of fungi and other organisms (pp. 36–48). New York: Plenum Press, Springer. doi:10.1007/978-1-4757-0064-0
  • Woodbine, M. (1959). Microbial fat: Microorganisms as potential fat producers. Progress in Industrial Microbiology, 1, 181–245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.