1,807
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants

&
Pages 1451-1470 | Received 24 Oct 2015, Accepted 13 Jul 2016, Published online: 11 Oct 2016

References

  • Adams, M. R., & Hall, C. J. (1988). Growth inhibition of food–borne pathogens by lactic acid and acetic acids and their mixtures. International Journal of Food Science and Technology, 23, 287–292. doi:10.1111/j.1365-2621.1988.tb00581.x
  • Axelsson, L. (2004). Lactic acid bacteria: Classification and physiology. In S. Salminen, A. von Wright, & A. Ouwehand (Eds.), Lactic acid bacteria. Microbiology and functional aspects. (pp. 1–66). New York, NY: Marcel Dekker.
  • Baek, E., Kim, H., Choi, H., Yoon, S., & Kim, J. (2012). Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. Journal of Microbiology, 50, 842–848. doi:10.1007/s12275-012-2153-y
  • Batish, V. K., Roy, U., Lal, R., & Grover, S. (1997). Antifungal attributes of lactic acid bacteria – A review. Critical Reviews in Biotechnology, 17, 209–225. Retrieved from: http://www.ncbi.nlm.nih.gov/pubmed/9306649 doi: 10.3109/07388559709146614
  • Cabo, M. L., Braber, A. F., & Koenraad, P. M. F. J. (2002). Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor due to acetic acid in the medium. Journal of Food Protection, 65, 1309–1316. Retrieved from http://www.ingentaconnect.com/content/iafp/jfp/2002/00000065/00000008/art00016
  • Cheong, Y. L. E., Sandhu, A., Jayabalan, J., Le, T. T. K., Nhiep, N. T., Ho, H. T. M., … Tumer, M. S. (2014). Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control, 46, 91–97. doi:10.1016/j.foodcont.2014.05.011
  • Chitarra, G. S., Breeuwer, P. P., Nout, M. J. R., van Aelst, A. C., Rombouts, F. M., & Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94, 159–166. doi:10.1046/j.1365-2672.2003.01819.x
  • Cizeikiene, D., Juodeikiene, G., Paskevicius, A., & Bartkiene, E. (2013). Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 31, 539–545. doi:10.1016/j.foodcont.2012.12.004
  • Claisse, O., & Lonvaud-Funel, A. (2000). Assimilation of glycerol by a strain of Lactobacillus collinoides isolated from cider. Food Microbiology, 17, 513–519. doi:10.1006/fmic.2000.0342
  • Coda, R., Rizzello, C. G., Nigro, F., De Angelis, M., Arnault, P., & Gobbetti, M. (2008). Long-term fungi inhibitory activity of water-soluble extract from Phaseolus vulgaris cv Pinto and sourdough lactic acid bacteria during bread storage. Applied and Environmental Microbiology, 74, 7391–7398. doi:10.1128/AEM.01420-08
  • Coloretti, F., Carri, S., Armaforte, E., Chiavari, C., Grazia, L., & Zambonelli, C. (2007). Antifungal activity of lactobacilli isolated from salami. FEMS Microbiology Letters, 271, 245–250. doi:10.1111/j.1574-6968.2007.00723.x
  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth promoting bacteria for biocontrol of plant diseases: Principles, mechanism of action, and future prospects: Minireview. Applied and Environmental Microbiology, 71, 4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005
  • Corsetti, A., Gobbetti, M., Rossi, J., & Damiani, P. (1998). Antimould activity of sourdough lactic acid bacteria: Identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Applied Microbiology and Biotechnology, 50, 253–256. doi:10.1007/s002530051285
  • Corsetti, A., Settanni, L., & Van Sinderen, D. (2004). Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. Journal of Applied Microbiology, 96, 521–534. doi:10.1111/j.1365-2672.2004.02171.x
  • Crowley, S., Mahony, J., & van Sinderen, D. (2013). Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiologica, 58, 291–299. doi:10.1007/s12223-012-0209-3
  • Dal Bello, F., Clarke, C. I., Ryan, L. A. M., Ulmer, H., Schober, T. J., Strom, K., … Arendt, E. K. (2007). Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 45, 309–318. doi:10.1016/j.jcs.2006.09.004
  • Dalie, D. K. D., Deschamps, A. M., Atanasova-Penichon, V., & Richard-Forget, F. (2010b). Potential of Pediococcus pentosaceus (L006) isolated from maize leaf to suppress fumonisin-producing fungal growth. Journal of Food Protection, 73, 1129–1137. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20537273
  • Dalie, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2010a). Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control, 21, 370–380. doi:10.1016/j.foodcont.2009.07.011
  • Degrassi, G., Aguilar, C., Bosco, M., Zahariev, S., Pongor, S., & Venturi, V. (2002). Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Current Microbiology, 45, 250–254. doi:10.1007/s00284-002-3704-y
  • De Muynck, C., Leroy, A. I. J., De Maeseneire, S., Arnaut, F., Soetaert, W., & Vandamme, E. J. (2004). Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiological Research, 159, 339–346. Retrieved from http://www.sciencedirect.com/science/article/pii/S0944501304000709 doi: 10.1016/j.micres.2004.07.002
  • El-Mabrok, A. S. W., Hassan, Z., Mokhtar, A. M., & Hussain, K. M. A. (2013). Antifungal activity of Lactobacillus plantarum LAB-C5 and LAB-G7 isolated from Malaysian fruits. Acta Biologica Malaysiana, 2, 22–30. doi:10.7593/abm/2.1.22
  • Franz, C. M., Du Toit, M., Olasupo, N. A., Schillinger, U., & Holzapfel, W. H. (1998). Plantaricin D, a bacteriocin produced by Lactobacillus plantarum BFE 905 from ready to eat salad. Letters in Applied Microbiology, 26, 232–234. doi:10.1046/j.1472-765X.1998.00332.x
  • Gajbhiye, M., Prakash, D., Jagdale, S., Ahiwale, S., Patil, N., & Kapadnis, B. (2012). Pomegranate borne fungicidal lactic acid bacteria and their biodiversity. Proceedings of National Academy of Sciences, India, Section B Biological Sciences, 82, 413–419. doi:10.1007/s40011-012-0055-8
  • Gajbhiye, M. H., Sathe, S. J., Marathe, R. J., & Deshmukh, R. B. (2013). Antifungal Bacillus subtilis AFB22 from pomegranate with potential to control fruit rot. Research Journal of Biotechnology, 8, 26–35. Retrieved from http://shankargargh.org/biotek_backissue/vol(8)2013/march2013.aspx
  • Gerbaldo, G. A., Barberis, C., Pascual, L., Dalcero, A., & Barberis, L. (2012). Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiology Letters, 332, 27–33. doi:10.1111/j.1574-6968.2012.02570.x
  • Gerez, C. L., Carbajo, M. S., Rollan, G., Torres, G. L., & Font de Valdez, G. (2010). Inhibition of citrus fungal pathogens by using lactic acid bacteria. Journal of Food Science, 75, 354–359. doi:10.1111/j.1750-3841.2010.01671.x
  • Gerez, C. L., Torino, M. I., Rollan, G., & de Valdez, G. F. (2009). Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control, 20, 144–148. doi:10.1016/j.foodcont.2008.03.005
  • Ghosh, R., Barman, S., Mukhopadhyay, A., & Mandal, N. C. (2015). Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biological Control, 83, 29–36. doi:10.1016/j.biocontrol.2014.12.020
  • Gould, G. W. (1996). Methods for preservation and extension of shelf life. International Journal of Food Microbiology, 33, 51–64. doi:10.1016/0168-1605(96)01133-6
  • Gourama, H. (1997). Inhibition of growth and mycotoxin production of Penicillium by Lactobacillus species. Lebensmittel-Wissenchaft und-Technologie, 30, 279–283. doi:10.1006/fstl.1996.0183
  • Gourama, H., & Bullerman, L. B. (1997). Anti-aflatoxigenic activity of Lactobacillus casei ssp. pseudoplantarum. International Journal of Food Microbiology, 34, 131–143. doi:10.1016/S0168-1605(96)01176-2
  • Guo, J., Mauch, A., Galle, S., Murphy, P., Arendt, E. K., & Coffey, A. (2011). Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri. Journal of Applied Microbiology, 111, 474–483. doi:10.1111/j.1365-2672.2011.05032.x
  • Gupta, R., & Srivastava, S. (2014). Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiology, 42, 1–7. doi:10.1016/j.fm.2014.02.005
  • Hassan, Y. I., & Bullerman, L. B. (2008). Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture. International Journal of Food Microbiology, 121, 112–115. doi:10.1016/j.ijfoodmicro.2007.11.038
  • Hou, C. T., & Forman, R. J. (2000). Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. Journal of Industrial Microbiology and Biotechnology, 24, 275–276. doi:10.1038/sj.jim.2900816
  • Jayatilake, G. S., Thornton, M. P., Leonard, A. C., Grimwade, J. E., & Baker, B. J. (1996). Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. Journal of Natural Products, 59, 293–296. doi:10.1021/np960095b
  • Kamata, M., Toyomasu, R., Suzuki, D., & Tanaka, T. (1986). D-phenyllactic acid production by Brevibacterium or Corynebacterium. Patent JP 86108396.
  • Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antoine van Leuwenhoek, 49, 202–224.
  • Kim, J. D. (2005). Antifungal activity of lactic acid bacteria isolated from kimchi against Aspergillus fumigatus. Mycobiology, 33, 210–214. doi:10.4489/MYCO.2005.33.4.210
  • Krebs, H. A., Wiggins, D., Stubbs, M., Sols, A., & Bedoya, F. (1983). Studies on the mechanism of the anti-fungal action of benzoate. Biochemical Journal, 214, 657–663. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1152300/pdf/biochemj00343-0011.pdf
  • Kuwaki, S., Ohhira, I., Takahata, M., Murata, Y., & Tada, M. (2002). Antifungal activity of the fermentation product of herbs by lactic acid bacteria against Tinea. Journal of Bioscience and Bioengineering, 94, 401–405. doi:10.1016/S1389-1723(02)80216-X
  • Kwak, M.-K., Liu, R., Kim, M.-K., Moon, D., Kim, A. H., Song, S.-H., & Kang, A.-O. (2014). Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. Journal of Microbiology, 52, 64–70. doi:10.1007/s12275-014-3520-7
  • Laitila, A., Alakomi, H. L., Raaska, L., Mattila-Sandholm, T., & Haikara, A. (2002). Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. Journal of Applied Microbiology, 93, 566–576. doi:10.1046/j.1365-2672.2002.01731.x
  • Lan, W., Chen, Y., Wu, H., & Yanagida, F. (2012). Bio-protective potential of lactic acid bacteria isolated from fermented wax gourd. Folia Microbiologica, 57, 90–105. doi:10.1007/s12223-012-0101-1
  • Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., & Gobbetti, M. (2000). Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 66, 4084–4090. doi:10.1128/AEM.66.9.4084-4090.2000
  • Lavermicocca, P., Valerio, F., & Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology, 69, 634–640. doi:10.1128/AEM.69.1.634-640.2003
  • Li, H., Liu, L., Zhang, S., Cui, W., & Lv, J. (2012). Identification of antifungal compounds produced by Lactobacillus casei AST18. Current Microbiology, 65, 156–161. doi:10.1007/s00284-012-0135-2
  • Li, H., Zhang, S., Lu, J., Liu, L., Uluko, H., Pang, X., … Lv, J. (2014). Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control, 43, 57–64. doi:10.1016/j.foodcont.2014.02.045
  • Lind, H., Jonsson, H., & Schnurer, J. (2005). Antifungal effect of dairy propionibacteria-contribution of organic acids. International Journal of Food Microbiology, 98, 157–165. doi:10.1016/j.ijfoodmicro.2004.05.020
  • Lind, H., Sjogren, J., Gohil, S., Kenne, L., Schnurer, J., & Broberg, A. (2007). Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiology Letters, 271, 310–315. doi:10.1111/j.1574-6968.2007.00730.x
  • Lindgren, S., & Dobrogosz, W. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 87, 149–163. doi:10.1111/j.1574-6968.1990.tb04885.x
  • Magnusson, J. (2003). Antifungal activity of lactic acid bacteria (Ph.D. thesis). Swedish University of Agricultural Sciences, Agraria 397, Uppsala, Sweden.
  • Magnusson, J., & Schnurer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology, 67, 1–5. doi:10.1128/AEM.67.1.1-5.2001
  • Magnusson, J., Strom, K., Roos, S., Sjogren, J., & Schnurer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters, 219, 129–135. doi:10.1016/S0378-1097(02)01207-7
  • Mandal, V., Sen, S. K., & Mandal, N. C. (2007). Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Natural Product Communications, 2, 671–674. Retrieved from https://www.researchgate.net/publication/278409870
  • Matei, S., Matei, A., Matei, G. M., & Cornea, C. P. (2015). Utilization of lactic acid bacteria and extracellular compounds in biological control of fungal species. Research Journal of Agricultural Science, 47, 122–132.
  • Mauch, A., Dal Bello, F., Coffey, A., & Arendt, E. K. (2010). The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. International Journal of Food Microbiology, 141, 116–121. doi:10.1016/j.ijfoodmicro.2010.05.002
  • Muhialdin, B. J., Hassan, Z., Baker, F. A., Algboory, H. L., & Saari, N. (2015a). Novel antifungal peptides produced by Leuconostoc mesenteroides DU15 effectively inhibit growth of Aspergillus niger. Journal of Food Science, 80, M1026–M1030. doi:10.1111/1750-3841.12844
  • Muhialdin, B. J., Hassan, Z., Baker, F. A., & Saari, N. (2015b). Identification of antifungal peptides produced by Lactobacillus plantarum IS10 grown in MRS broth. Food Control, 59, 27–30. doi:10.1016/j.foodcont.2015.05.022
  • Muhialdin, B. J., Hassan, Z., & Sadon, S. K. (2011). Antifungal activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004 and L. paracasi D5 on selected foods. Journal of Food Science, 76, 493–499. doi:10.1111/j.1750-3841.2011.02292.x
  • Munoz, R., Arena, M. E., Silva, J., & Gonzalez, S. N. (2010). Inhibition of mycotoxin –producing Aspergillus nomius VSC 23 by lactic acid bacteria and Saccharomyces cerevisiae. Brazilian Journal of Microbiology, 41, 1019–1026. doi:10.1590/S1517-83822010000400021
  • Nakanishi, K., Tokuda, H., Ando, T., Yajima, M., Nakajima, T., Tanaka, O., & Ohmomo, S. (2002). Screening of lactic acid bacteria having the ability to produce reuterin. Japanese Journal of Lactic Acid Bacteria, 13, 37–45. Retrieved from http://www.jstage.jst.go.jp/article/jslab1997/13/1/13_37/_pdf
  • Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S., & Thonart, P. (2011). Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of Food Science, 76, M305–M311. doi:10.1111/j.1750-3841.2011.02257.x
  • Ngang, J.-J. E., Yadang, G., Kamdem, S. L. S., Kouebou, C. P., Fanche, S. A. Y., Kougan, D. L., … Etoa, F.-X. (2014). Antifungal properties of selected lactic acid bacteria and application in the biological control of ochratoxin A producing fungi during cocoa fermentation. Biocontrol Science and Technology, 25, 245–259. doi:10.1080/09583157.2014.969195
  • Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T., & Haikara, A. (1999). New types of antimicrobials produced by Lactobacillus plantarum. Journal of Applied Microbiology, 86, 29–35. doi:10.1046/j.1365-2672.1999.00632.x
  • Ogunbanwo, S. T., Adebayo, A. A., Ayodele, M. A., Okanlawon, B. M., & Edema, M. O. (2008). Effects of lactic acid bacteria and Saccharomyces cerevisiae co-cultures used as starters on the nutritional contents and shelf life of cassava-wheat bread. Journal of Applied Bioscience, 12, 612–622. Retrieved from http://www.m.elewa.org/JABS/2008/12/1.pdf
  • Okkers, D. J., Dicks, L. M., Silvester, M., Joubert, J. J., & Odendaal, H. J. (1999). Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. Journal of Applied Microbiology, 87, 726–734. doi:10.1046/j.1365-2672.1999.00918.x/
  • Orla-Jensen, S. (1919). The lactic acid bacteria. Copenhagen: Host and Son.
  • O’Sullivan, L., Ross, R. P., & Hill, C. (2002). Potential of bacteriocins producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84, 593–604. doi:10.1016/S0300-9084(02)01457-8
  • Pal, K. K., & Gardener, B. M. 2006. Biological control of plant pathogens. The Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02
  • Peyer, L. C., Axel, C., Lynch, K. M., Zannini, E., Jacob, F., & Arendt, E. K. (2016). Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control, 69, 227–236. doi:10.1016/j.foodcont.2016.05.010
  • Piper, P., Calderon, O. C., Hatzixanthis, K., & Mollapour, M. (2001). Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology, 147, 2635–2642. Retrieved from http://mic.sgmjournals.org/content/147/10/2635.full.pdf
  • Plockova, M., Stiles, J., Chumchalova, J., & Halfarova, R. (2001). Control of mould growth by Lactobacillus rhamnosus VT1 and Lactobacillus reuteri CCM 3625 on milk agar plates. Czech Journal of Food Sciences, 19, 46–50. Retrieved from http://www.agriculturejournals.cz/publicFiles/84632.pdf
  • Prachyakij, P., Schnurer, J., Charernjiratrakul, W., & Kantachote, D. (2007). Selection and identification of lactic acid bacteria that inhibit yeast contaminants isolated from fermented plant beverages. Songklanakarin Journal of Science and Technology, 29, 211–218. Retrieved from http://rdo.psu.ac.th/sjstweb/journal/29-Suppl-2/0125-3395-29-S2-0211-0218.pdf
  • Prathivadi Bayankaram, P., & Sellamuthu, P. S. (2016). Antifungal and anti-aflatoxigenic effect of probiotics against Aspergillus flavus and Aspergillus parasiticus. Toxin Reviews, 35(1–2), 10–15. doi:10.1080/15569543.2016.1178147
  • Prema, P., Smila, D., Palavesam, A., & Immanuel, G. (2010). Production and characterization of an antifungal compound (3-Phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology, 3, 379–386. doi:10.1007/s11947-008-0127-1
  • Rather, I. A., Seo, B. J., Rejish Kumar, V. J., Choi, U. H., Choi, K. H., Lim, J. H., & Park, Y. H. (2013). Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Letters in Applied Microbiology, 57, 69–76. doi:10.1111/lam.12077
  • Rizzello, C. G., Cassone, A., Coda, R., & Gobbetti, M. (2011). Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chemistry, 127, 952–959. doi:10.1016/j.foodchem.2011.01.063
  • Rouse, S., Harnett, D., Vaughan, A., & van Sinderen, D. (2008). Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 104, 915–923. doi:10.1111/j.1365-2672.2007.03619.x
  • Roy, U., Batish, V. K., Grover, S., & Neelakantan, S. (1996). Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. International Journal of Food Microbiology, 32, 27–34. doi: 10.1016/0168-1605(96)01101-4
  • Roy, U., Kaushik, J. K., Grover, S., & Batish, V. K. (2009). Partial purification of an antifungal protein produced by Enterococcus faecalis CHD 28.3. Annals of Microbiology, 59, 279–284. doi:10.1007%2FBF03178329
  • Russo, P., Arena, M. P., Fiocco, D., Capozzi, V., Drider, D., & Spano, G. (2016). Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology. doi:10.1016/j.ijfoodmicro.2016.04.027
  • Ryan, L. A. M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P., & Arendt, E. K. (2011). Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. International Journal of Food Microbiology, 146, 276–283. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168160511001164
  • Ryu, E. H., Yang, E. J., Woo, E. R., & Chang, H. C. (2014). Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiology, 41, 19–26. doi:10.1016/j.fm.2014.01.011
  • Sathe, S. J., Nawani, N. N., Dhakephalkar, P. K., & Kapadnis, B. P. (2007). Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. Journal of Applied Microbiology, 103, 2622–2628. doi:10.1111/j.1365-2672.2007.03525.x
  • Schillinger, U., & Villarreal, J. V. (2010). Inhibition of Penicillium nordicum in MRS medium by lactic acid bacteria isolated from foods. Food Control, 21, 107–111. doi:10.1016/j.foodcont.2008.11.010
  • Schnurer, J., & Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science and Technology, 16, 70–78. Retrieved from http://www.sciencedirect.com/science/article/pii/S0924224404001943
  • Schutz, H., & Radler, F. (1984). Anaerobic reduction of glycerol to propanediol-1, 3 by L. brevis and L. buchneri. Systematic and Applied Microbiology, 5, 169–178. doi:10.1016/S0723-2020(84)80018-1
  • Schwenninger, S. M., Lacroix, C., Truttmann, S., Jans, C., Sporndli, C., Bigler, L., & Meile, L. (2008). Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. Journal of Food Protection, 71, 2481–2487. Retrieved from http://www.ingentaconnect.com/content/iafp/jfp/2008/00000071/00000012/art00016?crawler=true
  • Shrestha, A., Kim, B. S., & Park, D. H. (2014). Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology, 24, 763–779. doi:10.1080/09583157.2014.894495
  • Sjogren, J., Magnusson, J., Broberg, A., & Schnurer, J. (2003). Antifungal 3-hydroxyl fatty acids from Lactobacillus plantarum MiLAB14. Applied and Environmental Microbiology, 69, 7554–7557. doi:10.1128/AEM.69.12.7554-7557.2003
  • Smaoui, S., Elleuch, L., Bejar, W., Karray-Rebai, I., Ayadi, I., Jaouadi, B., … Mellouli, L. (2010). Inhibition of fungi and Gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Applied Biochemistry and Biotechnology, 162, 1132–1146. doi:10.1007/s12010-009-8821-7
  • Stiles, J., Penkar, S., Plockova, N., Chumchalova, J., & Bullerman, L. B. (2002). Antifungal activity of sodium acetate and Lactobacillus rhamnosus. Journal of Food Protection, 65, 1188–1191. Retrieved from http://www.ingentaconnect.com/content/iafp/jfp/2002/00000065/00000007/art00021
  • Strom, K., Schnurer, J., & Petter, M. (2005). Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiology Letters, 246, 119–124. doi:10.1016/j.femsle.2005.03.047
  • Strom, K., Sjogren, J., Broberg, A., & Schnurer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo (L-Pro-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68, 4322–4327. doi:10.1128/AEM.68.9.4322-4327.2002
  • Trias, R., Baneras, L., Badosa, E., & Montesinos, E. (2008a). Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology, 123, 50–60. doi:10.1016/j.ijfoodmicro.2007.11.065
  • Trias, R., Baneras, L., Montesinos, E., & Badosa, E. (2008b). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11, 231–236. doi:10.2436/20.1501.01.66
  • Tuma, S., Vogensen, F. K., Plockova, M., & Chumchalova, J. (2007). Isolation of antifungally active lactobacilli from Edam cheese. Acta Alimentaria, 36, 405–414. doi:10.1556/Aalim.2007.0015
  • Valerio, F., Favilla, M., De Bellis, P., Sisto, A., de Candia, S., & Lavermicocca, P. (2009). Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology, 32, 438–448. doi:10.1016/j.syapm.2009.01.004
  • Valerio, F., Lavermicocca, P., Pascale, M., & Visconti, A. (2004). Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters, 233, 289–295. doi:10.1111/j.1574-6968.2004.tb09494.x
  • Wang, H. K., Yan, H., Shin, J., Huang, L., Zhang, H. P., & Qi, W. (2011). Activity against plant pathogenic fungi of Lactobacillus plantarum IMAU10014 isolated from Xinjiang koumiss in China. Annals of Microbiology, 61, 879–885. doi:10.1007/s13213-011-0209-6
  • Wang, H. K., Yan, Y. H., Wang, J. M., Zhang, H. P., & Qi, W. (2012). Production and characterization of antifungal compounds by Lactobacillus plantarum IMAU10014. PloS ONE, 7, e29452–e29458. doi:10.1371/journal.pone.0029452
  • Wang, Y., Mueller, U. G., & Clardy, J. (1999). Antifungal diketopiperazines from symbiotic fungus of fungus-growing ant Cyphomyrmex minutius. Journal of Chemical Ecology, 25, 935–941. doi:10.1023/A:1020861221126
  • Whipps, J. M. (2001). Microbial interactions and biocontrol in rhizosphere. Journal of Experimental Botany, 52, 487–511. doi:10.1093/jexbot/52.suppl_1.487
  • Wood, B. J., & Holzapfel, W. H. N. (2012). The genera of lactic acid bacteria (Vol. 2). Dordrecht: Springer Science & Business Media.
  • Yan, P. S., Song, Y., Sakuno, E., Nakajima, H., Nakagawa, H., & Yabe, K. (2004). Cyclo (L-Leucyl-L-Prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Applied and Environmental Microbiology, 70, 7466–7473. doi:10.1128/AEM.70.12.7466-7473.2004
  • Yang, E. J., & Chang, H. C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology, 139, 56–63. doi:10.1016/j.ijfoodmicro.2010.02.012
  • Yang, V. W., & Clausen, C. A. (2005). Determining the suitability of lactobacilli antifungal metabolites for inhibiting mould growth. World Journal of Microbiology and Biotechnology, 21, 977–981. doi:10.1007/s11274-004-7552-8
  • Zheng, Z. J., Ma, C. Q., Gao, C., Li, F. S., Qin, J. Y., Zhang, H. W.,  … Xu, P. (2011). Efficient conversion of phenylpyruvic acid to phenyllactic acid by using whole cells of Bacillus coagulans SDM. PloS ONE, 6, e19030. doi:10.1371/journal.pone.0019030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.