239
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Biological control of Sclerotinia disease by Aspergillus sp. on oilseed rape in the field

, , , , , , , & show all
Pages 1526-1537 | Received 13 Mar 2016, Accepted 26 Jul 2016, Published online: 11 Oct 2016

References

  • Bardin, S. D., & Huang, H. C. (2001). Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology, 23, 88–98. doi: 10.1080/07060660109506914
  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005
  • Dan, L., Lu, M., Zhou, G., & Mou, Z. (1999). Study on the determination of the content of chitin and chitosan. Jiangxi Chemical Industry, 1, 8–10.
  • Fernando, W. G. D., Nakkeeran, S., Zhang, Y., & Savchuk, S. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 26, 100–107. doi: 10.1016/j.cropro.2006.04.007
  • Fuller, P. A., Coyne, D. P., & Steadman, J. R. (1984). Inheritance of resistance to white mold disease in a diallel cross of dry beans. Crop Science, 24, 929–933. doi: 10.2135/cropsci1984.0011183X002400050025x
  • Guan, C. Y. (2011). The development direction of the oilseed rape industry in China. Grain Science, Technology and Economics, 36, 5–6.
  • Handelsman, J., & Stabb, E. V. (1996). Biocontrol of plant pathogens. Plant and Cell, 8, 1855–1869. doi: 10.1105/tpc.8.10.1855
  • Hu, X., Roberts, D. P., Jiang, M., & Zhang, Y. (2005). Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Applied Microbiology and Biotechnology, 68, 802–807. doi: 10.1007/s00253-005-1938-x
  • Hu, X., Roberts, D. P., Maul, J. E., Emche, S. E., Liao, X., Guo, X., … Liu, S. (2011). Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Canadian Journal of Microbiology, 57, 539–546. doi: 10.1139/w11-041
  • Hu, X., Roberts, D. P., Xie, L., Maul, J. E., Yu, C., Li, Y., … Liao, X. (2014). Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biological Control, 70, 54–64. doi: 10.1016/j.biocontrol.2013.12.005
  • Hu, X., Roberts, D. P., Xie, L., Maul, J. E., Yu, C., Li, Y., … Liao, X. (2013a). Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Protection, 52, 151–158. doi: 10.1016/j.cropro.2013.05.018
  • Hu, X., Roberts, D. P., Xie, L., Maul, J. E., Yu, C., Li, Y., … Liao, X. (2013b). Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape. Canadian Journal of Microbiology, 59, 231–236. doi: 10.1139/cjm-2012-0579
  • Hu, X., Roberts, D. P., Xie, L., Maul, J. E., Yu, C., Li, Y., … Liao, X. (2015). Components of a rice-oilseed rape production system augmented with Trichoderma sp. Tri-1 control Sclerotinia sclerotiorum on oilseed rape. Phytopathology, 105, 1325–1333. doi: 10.1094/PHYTO-12-14-0371-R
  • Hu, X., Webster, G., Xie, L., Yu, C., Li, Y., & Liao, X. (2013). A new mycoparasite, Aspergillus sp. ASP-4, parasitizes the sclerotia of Sclerotinia sclerotiorum. Crop Protection, 54, 15–22. doi: 10.1016/j.cropro.2013.07.014
  • Hu, X., Zhang, M., Yu, C., Xie, L., Zhang, C., Cheng, Y., … Liao, X. (2010). Isolated fungal strains inhibiting sclerotia germination and the study of their biocontrol. Chinese Journal of Oil Crop Science, 32, 567–570.
  • Ji, P., Campbell, H. L., Kloepper, J. W., Jones, J. B., Suslow, T. V., & Wilson, M. (2006). Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control, 36, 358–367. doi: 10.1016/j.biocontrol.2005.09.003
  • Jones, D., Gordon, A. H., & Bacon, J. S. D. (1974). Co-operative action by endo- and exo-β-(1,3) glucanases from parasitic fungi in the degradation of cell-wall glucans of Sclerotinia sclerotiorum (lib.) de Bary. Biochemical Journal, 140, 47–55. doi: 10.1042/bj1400047
  • Jones, D., & Watson, D. (1969). Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib.) de Bary, a phytopathogenic fungus. Nature, 224, 287–288. doi: 10.1038/224287a0
  • Lemanceau, P., & Alabouvette, C. (1991). Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protection, 10, 279–286. doi: 10.1016/0261-2194(91)90006-D
  • Le Tourneau, D. (1979). Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology, 69, 887–890. doi: 10.1094/Phyto-69-887
  • Li, C., Li, H., Siddique, A. B., Sivasithamparam, K., Salisbury, P., Banga, S. S., … Barbetti, M. J. (2007). The importance of the type and time of inoculation and assessment in the determination of resistance in Brassia napus and B. juncea to Sclerotinia sclerotiorum. Australian Journal of Agricultural Research, 58, 1198–1203. doi: 10.1071/AR07094
  • Li, H., & Fan, H. (2011). Effect of different sample treatment methods on observation of coconut pollen by scanning electron microscope. Acta Agriculture Jiangxi, 2, 74–75.
  • Li, S., Gu, J., Jiang, R., & Niu, Y. (2010). β-1,3 glucanase activity from biocontrol Trichoderma strains. Journal of Microbiology, 30, 88–91.
  • Lu, G. (2003). Engineering Sclerotinia sclerotiorum resistance in oilseed crops. African Journal of Biotechnology, 2, 509–516. doi: 10.5897/AJB2003.000-1101
  • Ma, H.-X., Feng, X.-J., Chen, Y., Chen, C.-J., & Zhou, M.-G. (2009). Occurrence and characterization of dimethachlon insensitivity in Sclerotinia sclerotiorum in Jiangsu Province of China. Plant Disease, 93, 36–42. doi: 10.1094/PDIS-93-1-0036
  • Ma, X.-H., Chen, Y., Wang, J.-X., Yu, W.-Y., Tang, Z.-H., Chen, C.-J., … Zhou, M.-G. (2009). Activity of carbendazim, dimethachlon, iprodione, procymidone and boscalid against Sclerotinia stem rot in Jiangsu Province of China. Phytoparasitica, 37, 421–429. doi: 10.1007/s12600-009-0057-0
  • Martens, J., Seaman, W., & Atkinson, G., (Eds.). (1994). Diseases of Field Crops in Canada. Ottawa: ON: The Canadian Phytopathological Society.
  • Muthumeenakshi, S., Sreenivasaprasad, S., Rogers, C. W., Challen, M. P., & Whipps, J. M. (2007). Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genetics and Biology, 44, 1262–1284. doi: 10.1016/j.fgb.2007.07.011
  • Nelson, B. (1998). Biology of Sclerotinia. In Proceedings of the 10th International Sclerotinia Workshop, 21 January, Fargo, ND. Fargo: North Dakota State University Department of Plant Pathology.
  • Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84, 940–947. doi: 10.1094/Phyto-84-940
  • Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases, symptom pathology, host range, geographic distribution, and impact. Phytopathology, 69, 875–880. doi: 10.1094/Phyto-69-875
  • Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88, 1158–1164. doi: 10.1094/PHYTO.1998.88.11.1158
  • Reissing, J. L., Strominger, J. L., & Leloir, L. F. (1955). A modified colorimetric method for estimation of N-acetylamine sugars. Journal of Biological Chemistry, 217, 959–966.
  • Roberts, D. P., & Kobayashi, D. Y. (2011). Impact of spatial heterogeneity within spermosphere and rhizosphere environments on performance of bacterial biological control agents. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 111–130). Berlin: Springer.
  • Stroup, W. W. (2013). Generalized Linear Mixed Models Modern Concepts, Methods and Applications. Boca Raton, FL: CRC Press.
  • Su, W., Lu, J., Zhou, G., Li, X., Li, Y., & Liu, X. (2011). Influence of straw-returning on rapeseed (Brassica napus L.) growth, soil temperature and moisture. Plant Nutrition and Fertilizer Science, 17, 366–373.
  • de Vrije, T., Antoin, N., Buitelaar, R. M., Bruckner, S., Dissevelt, M., Durand, A., … Whipps, J. M. (2001). The fungal biocontrol agent Coniothyrium minitans: Production by solid-state fermentation, application and marketing. Applied Microbiology and Biotechnology, 56, 58–68. doi: 10.1007/s002530100678
  • Wang, Y., Duan, Y., Wang, J., & Zhou, M. (2015). A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum. Molecular Plant Pathology, 16, 653–661. doi:10.1111/mpp.12222
  • Wessels, J. G. H., & Sitsma, J. H. (1981). Fungal cell walls: a survey. In W. Tanner & F. A. Loewus (Eds.), Plant carbohydrates II. Extracellular carbohydrates. Encyclopedia of plant physiology (pp. 352–394). New York, NY: Springer Verlag.
  • Wilson, M. (1996). An integrated biological control strategy for foliar bacterial diseases of tomato. IOBC Bulletin, 19, 57.
  • Xie, G., Dong, Z., Miao, X., & Jia, X. (1997). Some properties of chitinase from Aspergillus sp. F-817. Journal of Agricultural Biotechnology, 5, 79–82.
  • Yin, Y., Liu, X., Shi, Z., & Ma, Z. (2010). A multiplex allele-specific PCR method for the detection of carbendazim-resistant Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 97, 36–42. doi: 10.1016/j.pestbp.2009.12.002
  • Yu, Q., & Zhou, B. (1994). Integrated control of Sclerotinia disease in oilseed rape. Oil Crops of China, 16, 8–10.
  • Zhao, J., & Meng, J. (2003). Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breeding, 122, 19–23. doi: 10.1046/j.1439-0523.2003.00784.x
  • Zhou, B. (1994). Resistance assessments of Sclerotinia disease in oilseed rape. Oil Crops of China, 16, 88–94.
  • Zhou, T., & Boland, G. J. (1998). Biological control strategies for Sclerotinia diseases. In G. J. Boland & L. D. Kuykendall (Eds.), Plant-microbe interactions and biological control (pp. 127–156). New York, NY: Marcel Dekker.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.