333
Views
20
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of suitability and suppressiveness of on-farm green compost as a substitute of peat in the production of lavender plants

, , , , , , , & show all
Pages 539-555 | Received 11 Sep 2016, Accepted 13 Apr 2017, Published online: 29 Apr 2017

References

  • Aleandri, M. P, Chilosi, G., Bruni, N., Tomassini, A., Vettraino, A. M., & Vannini, A. (2015). Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection, 67, 269–278. doi: 10.1016/j.cropro.2014.10.023
  • Aleandri, M. P., Chilosi, G., Muganu, M., Vettraino, A. M., Marinari, S., Paolocci, M., … Vannini, A. (2015). On farm production of compost from nursery green residues and its use to reduce peat for the production of olive pot plants. Scientia Horticulturae, 193, 301–307. doi: 10.1016/j.scienta.2015.06.048
  • Altieri, R., Esposito, A., Baruzzi, G., & Nair, T. (2014). Corroboration for the successful application of humified olive mill waste compost in soilless cultivation of strawberry. International Biodeterioration & Biodegradation, 88, 118–124. doi: 10.1016/j.ibiod.2013.12.006
  • Álvarez, L. A., Pérez-Sierra, A., Armengol, J., & García-Jiménez, J. (2007). Characterization of Phytophthora nicotianae isolates causing collar and root rot of lavender and rosemary in Spain. Journal of Plant Pathology, 89, 251–254.
  • Avilés, M., Borrero, C., & Trillas, M. I. (2011). Review on compost as an inducer of disease suppression in plants grown in soilless culture. Special Issue Compost III—dynamic plant, dynamic soil. Global Science Books, 5, 1–11.
  • Benito, M., Masaguer, A., De Antonio, R., & Moliner, A. (2005). Use of pruning waste compost as a component in soilless growing media. Bioresource Technology, 96, 597–603. doi: 10.1016/j.biortech.2004.06.006
  • Benito, M., Masaguer, A., Moliner, A., & De Antonio, R. (2006). Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresource Technology, 97, 2071–2076. doi: 10.1016/j.biortech.2005.09.011
  • Benson, D. M., & Cartwright, D. K. (1996). Ornamental diseases incited by Rhizoctonia spp. In B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 303–314). Dordrecht: Springer Netherlands.
  • Bielenin, M., & Joustra, M. K. (2000). The effect of day-night temperature regimes and two nutrient solution concentrations on growth of Lavandula angustifolia ‘Munstead’ and Magnolia soulangiana. Scientia Horticulturae, 85, 113–121. doi: 10.1016/S0304-4238(99)00131-4
  • Bissett, J. (1991). A revision of the genus Trichoderma. III. Section Pachybasium. Canadian Journal of Botany, 69, 2372–2417.
  • Boldrin, A., Andersen, J. K., Møller, J., Favoino, E., & Christensen, T. H. (2009). Composting and compost utilization: Accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27, 800–812. doi: 10.1177/0734242X09345275
  • Boldrin, A., Hartling, K. R., Laugen, M., & Christensen, T.H. (2010). Environmental inventory modelling of the use of compost and peat in growth media preparation. Resources, Conservation and Recycling, 54, 1250–1260. doi: 10.1016/j.resconrec.2010.04.003
  • Bonanomi, G., Antignani V., Capodilupo M., & Scala F. (2010). Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry, 42, 136–144. doi: 10.1016/j.soilbio.2009.10.012
  • Bonanomi, G., Antignani, V., Pane, C., & Scala, F. (2007). Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology, 89, 311–324.
  • Bugbee, W. M. (1990). Purification and characteristics of pectin lyase from Rhizoctonia solani. Physiological and Molecular Plant Pathology, 36, 15–25. doi: 10.1016/0885-5765(90)90088-F
  • Castaño, R., Borrero, C., & Avilés, M. (2011). Organic matter fractions by SP-MAS13C NMR and microbial communities involved in the suppression of Fusarium wilt in organic growth media. Biological Control, 58, 286–293. doi: 10.1016/j.biocontrol.2011.05.011
  • Ceglie, F. G., Bustamante, M. A., Ben Amara, M., Tittarelli, F., & Singer, A. C. (2015). The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE, 10(6), e0128600. doi: 10.1371/journal.pone.0128600
  • Chaverri, P., Castlebury, L. A., Overton, B. E., & Samuels, G. J. (2003). Hypocrea/Trichoderma: Species with conidiophore elongations and green conidia. Mycologia, 95, 1100–1140. doi: 10.1080/15572536.2004.11833023
  • Chet, I., & Baker, R. (1980). Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology, 70, 994–998. doi: 10.1094/Phyto-70-994
  • Cotton, P., Kasza, Z., Bruel, C., Rascle, C., & Fèvre, M. (2003). Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum. FEMS Microbiology Letters, 227, 163–169. doi: 10.1016/S0378-1097(03)00582-2
  • Daughtrey, M.L., & Benson, D.M. (2005). Principles of plant health management for ornamental plants. Annual Review of Phytopathology, 43, 141–169. doi: 10.1146/annurev.phyto.43.040204.140007
  • De Lucia, B., Cristiano, G., Vecchietti, L., Rea, E., & Russo, G. (2013). Nursery growing media: Agronomic and environmental quality assessment of sewage sludge-based compost. Applied and Environmental Soil Science, 10, 1–10. doi: 10.1155/2013/565139
  • De Lucia, B., Vecchietti, L., Rinaldi, S., Rivera, C. M., Trinchera, A., & Rea, E. (2013). Effect of peat-reduced and peat-free substrates on rosemary growth. Journal of Plant Nutrition, 36, 863–876. doi: 10.1080/01904167.2013.770018
  • Dennis, C., & Webster, J. (1971a). Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57, 41–48. doi: 10.1016/S0007-1536(71)80078-5
  • Dennis, C., & Webster, J. (1971b). Antagonistic properties of species-groups of Trichoderma. I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 84, 25–39. doi: 10.1016/S0007-1536(71)80077-3
  • Edgington, L. V., Khew, K. L., & Barron, G. I. (1971). Fungitoxic spectrum of benzimidazole compounds. Phytopathology, 61, 42–44. doi: 10.1094/Phyto-61-42
  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St Paul, MN: APS Press.
  • Folmsbee, M., & Strevett, K. A. (1999). Bioaerosol concentration at an outdoor composting center. Journal of the Air & Waste Management Association, 49, 554–561. doi: 10.1080/10473289.1999.10463824
  • Guimaraes, R. L., & Stotz, H. U. (2004). Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiolology, 136, 3703–3711. doi: 10.1104/pp.104.049650
  • Hardy, G. S. J., & Sivasithamparam, K. (1991). Suppression of Phytophthora root rot by a composted Eucalyptus bark mix. Australian Journal of Botany, 39, 153–159. doi: 10.1071/BT9910153
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. doi: 10.1038/nrmicro797
  • Harris, K., Young, I. M., Gilligan, C. A., Otten, W., & Ritz, K. (2003). Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiology Ecology, 44, 45–56. doi: 10.1111/j.1574-6941.2003.tb01089.x
  • Hoitink, H. A. (1980). Composted bark, a light weight growth medium with fungicidal properties. Plant Disease, 66, 142–147. doi: 10.1094/PD-64-142
  • Kim, T. G., & Knudsen, G. R. (2008). Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Applied Soil Ecology, 40, 100–108. doi: 10.1016/j.apsoil.2008.03.013
  • Krause, S. M., Madden, L. V., & Hoitink, H. A. J. (2001). Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping off of radish and Rhizoctonia crown and root rot of poinsettia. Phytopathology, 91, 1116–1123. doi: 10.1094/PHYTO.2001.91.11.1116
  • Kullnig-Gradinger, C. M., Szakacs, G., & Kubicek, C. P. (2002). Phylogeny and evolution of the fungal genus Trichoderma: A multigene approach. Mycological Research, 106, 757–767. doi: 10.1017/S0953756202006172
  • Kuo, S., Ortiz-Escobar, M. E., Hue, N. V., & Hummel, R. L. (2004). Composting and compost utilization for agronomic and container crops. Recent Research Developments in Environmental Biology, 1, 451–513.
  • Kuter, G. A., Nelson, E. B., Hoitink, H. A. J., & Madden, L. V. (1983). Fungal populations in container media amended with composted hardwood bark suppressive and conductive to Rhizoctonia damping-off. Phytopathology, 73, 1450–1456. doi: 10.1094/Phyto-73-1450
  • Litterick, A. M., Harrier, L., Wallace, P., Watson, C. A., & Wood, M. (2004). The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production – a review. Critical Reviews in Plant Sciences, 23, 453–479. doi: 10.1080/07352680490886815
  • Litterick, A., & Wood, M. (2009). The use of composts and compost extracts in plant disease control. In D. Walters (Ed.), Disease control in crops: Biological and environmentally friendly approaches (pp. 93–121). Oxford: Wiley-Blackwell.
  • Lo, C.-S., & Lin, C.-Y. (2002). Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathology Bulletin, 11, 215–220.
  • Loffredo, E., Berloco, M., & Senesi, N. (2008). The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Ecotoxicology and Environmental Safety, 69, 350–357. doi: 10.1016/j.ecoenv.2007.11.005
  • Loffredo, E., & Senesi, N. (2009). In vitro and in vivo assessment of the potential of compost and its humic acid fraction to protect ornamental plants from soil-borne pathogenic fungi. Scientia Horticulturae, 122, 432–439. doi: 10.1016/j.scienta.2009.05.030
  • Maniadakis, K., Lasaridi, K., Manios, Y., Kyriacou, M., & Manios, T. (2004). Integrated waste management through producers and consumers education: Composting of vegetable crop residues for reuse in cultivation. Journal of Environmental Science and Health, Part B, 39, 169–183. doi: 10.1081/PFC-120027447
  • Méndez, A., Cárdenas-Aguiar, E., Paz-Ferreiro, J., Plaza, C., & Gascó, G. (2017). The effect of sewage sludge biochar on peat-based growing media. Biological Agriculture & Horticulture, 33(1), 40–51. doi: 10.1080/01448765.2016.1185645
  • MiPAAF. (2014). Piano di settore della filiera delle piante officinali 2014–16. Ministry of Agricultural, Food and Forestry Policies (Italy). https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/7562
  • Mitchell, D. J., Kannwischer, M. E., & Zentmyer, G. A. (1986). Isolation, identification and production of inoculum of Phytophthora spp. In K. D. Dickey (Ed.), Methods for evaluating pesticides for control of plant pathogens (pp. 63–66). St. Paul, MN: American Phytopathological Society.
  • Morton, D. T., & Stroube, N. H. (1955). Antagonistic and stimulatory effects of microorganism upon Sclerotiumrolfsii. Phytopathology, 45, 419–420.
  • Motta, E., & Annesi, T. (2006). Root phytopathological problems in forest nursery and control strategies. Petria, 16, 261–276.
  • Muganu, M., Balestra, G. M., & Senni, S. (2010). The importance of organic method in social horticulture. Acta Horticulturae, 881, 847–849. doi: 10.17660/ActaHortic.2010.881.140
  • Nelson, E. B., Kuter, G. A., & Hoitink, H. A. J. (1983). Effects of fungal antagonists and compost age on suppression of Rhizoctonia damping-off in container media amended with composted hardwood bark. Phytopathology, 73, 1457–1462. doi: 10.1094/Phyto-73-1457
  • Otten, W., Gilligan, C. A., Watts, C. W., Dexter, A. R., & Hall, D. (1999). Continuity of air-filled pores and invasion thresholds for a soilborne fungal plant pathogen, Rhizoctonia solani. Soil Biology and Biochemistry, 31, 1803–1810. doi: 10.1016/S0038-0717(99)00099-1
  • Pane, C., Celano, G., Piccolo, A., Villecco, D., Spaccini, R., Palese, A. M., & Zaccardelli, M. (2015). Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chemical and Biological Technologies in Agriculture, 2(1), 4. doi: 10.1186/s40538-014-0026-9
  • Pane, C., Piccolo, A., Spaccini, R., Celano, G., Villecco, D., & Zaccardelli, M. (2013). Agricultural waste-based composts exhibiting suppressivity to diseases caused by the phytopathogenic soil-borne fungi Rhizoctonia solani and Sclerotinia minor. Applied Soil Ecology, 65, 43–51. doi: 10.1016/j.apsoil.2013.01.002
  • Paré, M., Paulitz, T. C., & Stewart, K. A. (2000). Composting of crucifer wastes using geotextile covers. Compost Science & Utilization, 8, 36–45. doi: 10.1080/1065657X.2000.10701748
  • Raviv, M. (2005). Production of high-quality composts for horticultural purposes: A mini-review. Hort Technology, 15, 52–57.
  • Russo, G., Verdiani, G., & Anifantis, A.S. (2016). Re-use of agricultural biomass for nurseries using proximity composting. Contemporary Engineering Sciences, 9, 1151–1182. doi: 10.12988/ces.2016.68135
  • Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., & Swings, J. (2003). Microbiological aspects of biowaste during composting in a monitored compost bin. Journal of Applied Microbiology, 94, 127–137. doi: 10.1046/j.1365-2672.2003.01800.x
  • Salerno, M. I., Lori, G., Camporota, P., & Perrin, R. (1999). Solarisation for the control of soil-borne pathogens in forest nurseries in temperate climate. Journal of Plant Pathology, 81, 95–102.
  • Samuels, G. J., Dodd, S. L., Gams, W., Castlebury, L. A., & Petrini, O. (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricusbisporus. Mycologia, 94, 146–170. doi: 10.1080/15572536.2003.11833257
  • Scheuerell, S. J., Sullivan, D. M., & Mahaffee, W. F. (2005). Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology, 95, 306–315. doi: 10.1094/PHYTO-95-0306
  • Scotti, R., Pane, C., Spaccini, R., Palese, A. M., Piccolo, A., Celano, G., & Zaccardelli, M. (2016). On-farm compost: A useful tool to improve soil quality under intensive farming systems. Applied Soil Ecology, 107, 13–23. doi: 10.1016/j.apsoil.2016.05.004
  • St. Martin, C. C. G., & Brathwaite, R. A. I. (2012). Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture and Horticulture, 28, 1–33. doi: 10.1080/01448765.2012.671516
  • Szczech, M., Rondomański, W., Brzeski, M. W., Smolińska, U., & Kotowski, J. F. (1993). Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biological Agriculture and Horticulture, 10, 47–52. doi: 10.1080/01448765.1993.9754650
  • Szczech, M., & Smolinska, U. (2001). Comparison of suppressiveness of vermicomposts produced from animal manures and sewage sludge against Phytophthora nicotianae Breda de Haan var. nicotianae. Journal of Phytopathology, 149, 77–82. doi: 10.1046/j.1439-0434.2001.00586.x
  • Termorshuizen, A. J., & Jeger, M. J. (2008). Strategies of soilborne plant pathogenic fungi in relation to disease suppression. Fungal Ecology, 1, 108–114. doi: 10.1016/j.funeco.2008.10.006
  • Termorshuizen, A. J., van Rijn, E., van der Gaag, D. J., Alabouvette, C., Chen, Y., Lagerlöf, J., … Zmora-Nahum, S. (2006). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biology and Biochemistry, 38, 2461–2477. doi: 10.1016/j.soilbio.2006.03.002
  • Trillas, M. I., Casanova, E., Cotxarrera, L., Ordovás, J., Borrero, C., & Avilés, M. (2006). Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biological Control, 39, 32–38. doi: 10.1016/j.biocontrol.2006.05.007
  • Vargas Gil, S., Pastor, S., & March, G. J. (2009). Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiological Research, 164, 196–205. doi: 10.1016/j.micres.2006.11.022
  • Veeken, A. H. M., Blok, W. J., Curci, F., Coenen, G. C. M., Termorshuizen, A. J., & Hamelers, H. V. M. (2005). Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes. Soil Biology and Biochemistry, 37, 2131–2140. doi: 10.1016/j.soilbio.2005.03.018
  • White, T. J., Brums, T., Lee, S., & Taylor, J. (1990). Amplification phylogenetics. In N. Innis, D. Gelfand, J. Sninsky, & T. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 315–322). San Diego, CA: Accademic Press.
  • Widmer, T. L., Graham, J. H., & Mitchell, D. J. (1998). Composted municipal waste reduces infection of citrus seedlings by Phytophthora nicotianae. Plant Disease, 82, 683–688. doi: 10.1094/PDIS.1998.82.6.683

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.