4,065
Views
118
CrossRef citations to date
0
Altmetric
Review Article

Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges

, , , , &
Pages 207-228 | Received 06 Sep 2017, Accepted 12 Nov 2018, Published online: 25 Nov 2018

References

  • Ajouz, S., Walker, A. S., Fabre, F., Leroux, P., Nicot, P. C., & Bardin, M. (2011). Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl, 56(3), 353–363.
  • Amini, M., Safaie, N., Salmani, M. J., & Shams-Bakhsh, M. (2012). Antifungal activity of three medicinal plant essential oils against some phytopathogenic fungi. Trakia Journal of Sciences, 10, 1–8.
  • Avenot, H. F., & Michailides, T. J. (2010). Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29(7), 643–651.
  • Banani, H., Olivieri, L., Santoro, K., Garibaldi, A., Gullino, M. L., & Spadaro, D. (2018). Thyme and savory essential oil efficacy and induction of resistance against Botrytis cinerea through priming of defense responses in apple. Foods (Basel, Switzerland), 7(2), 11.
  • Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2008). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Phytopathology, 98(4), 443–450.
  • Bardin, M., Comby, M., Lenaerts, R., & Nicot, P. C. (2013a). Diversity in susceptibility of Botrytis cinerea to biocontrol products inducing plant defense mechanisms. IOBC-WPRS Bull, 88, 45–49.
  • Bardin, M., Comby, M., Troulet, C., & Nicot, P. C. (2013b). Relationship between the aggressiveness of Botrytis cinerea on tomato and the efficacy of biocontrol. IOBC-WPRS Bull, 86, 163–168.
  • Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., & Fallik, E. (2003). Controlling gray mold caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22(2), 285–290.
  • Bhagwat, M. K., & Datar, A. G. (2014). Antifungal activity of herbal extracts against plant pathogenic fungi. Archives of Phytopathology and Plant Protection, 47(8), 959–965.
  • Boddy, L. (2016). Pathogens of autotrophs. The fungi (3rd ed.). London: Academic Press, 245–292.
  • Bogumił, A., Paszt, L. S., Lisek, A., Trzciński, P., & Harbuzov, A. (2013). Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea. Folia Horticulturae, 25(2), 123–132.
  • Borges, ÁV, Saraiva, R. M., & Maffia, L. A. (2015). Biocontrol of gray mold in tomato plants by Clonostachys rosea. Tropical Plant Pathology, 40(2), 71–76.
  • Boukaew, S., Prasertsan, P., Troulet, C., & Bardin, M. (2014). Efficacy of Streptomyces spp. Strains against different strains of Botrytis cinerea. 13. IOBC-WPRS meeting of the working group biological control of fungal and bacterial plant pathogens. Biocontrol of plant diseases: From the field to the laboratory and back again. Uppsala: SWE.
  • Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M. E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiology, 63, 101–110.
  • Calvo-Garrido, C., Viñas, I., Elmer, P. A., Usall, J., & Teixidó, N. (2014). Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Management Science, 70(4), 595–602.
  • Ceylan, E., & Fung, D. Y. (2004). Antimicrobial activity of spices. Journal of Rapid Methods and Automation in Microbiology, 12(1), 1–55.
  • Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Grant, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1573), 1987–1998.
  • Chardonnet, C. O., Sams, C. E., Trigiano, R. N., & Conway, W. S. (2000). Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology, 90(7), 769–774.
  • Chiou, A. L., & Wu, W. S. (2001). Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily. Journal of Phytopathology, 149(6), 319–324.
  • Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J., Simon, A., & Viaud, M. (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 277, 1–10.
  • Ciliberti, N., Fermaud, M., Languasco, L., & Rossi, V. (2015). Influence of fungal strain, temperature, and wetness duration on infection of grapevine inflorescences and young berry clusters by Botrytis cinerea. Phytopathology, 105(3), 325–333.
  • Clough, J. M. (2000). The strobilurin fungicides-from mushroom to molecule to market. Special Publication – Royal Society of Chemistry, 257, 277–282.
  • Cole, L., Dewey, F. M., & Hawes, C. R. (1996). Infection mechanisms of botrytis species: pre-penetration and pre-infection processes of dry and wet conidia. Mycological Research, 100, 277–286.
  • Combrinck, S., Regnier, T., & Kamatou, G. P. P. (2011). In vitro activity of eighteen essential oils and some major components against common postharvest fungal pathogens of fruit. Industrial Crops and Products, 33, 344–349.
  • Costa, L. B., Rangel, D. E., Morandi, M. A., & Bettiol, W. (2013). Effects of UV-B radiation on the antagonistic ability of Clonostachys rosea to Botrytis cinerea on strawberry leaves. Biological Control, 65(1), 95–100.
  • Daniel, C. K., Lennox, C. L., & Vries, F. A. (2015). In vivo application of garlic extracts in combination with clove oil to prevent postharvest decay caused by Botrytis cinerea, Penicillium expansum and Neofabraea alba on apples. Postharvest Biology and Technology, 99, 88–92.
  • Daryaei, A., Jones, E. E., Ghazalibiglar, H., Glare, T. R., & Falloon, R. E. (2016). Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride. Journal of Applied Microbiology, 120(4), 999–1009.
  • Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430.
  • De Corato, U., Salimbeni, R., De Pretis, A., Avella, N., & Patruno, G. (2017). Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology, 131, 16–30.
  • Desai, S., Kumar, G. P., Amalraj, E. L. D., Talluri, V. R., & Peter, A. J. (2016). Challenges in regulation and registration of biopesticides: An overview. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 301–308). New Delhi: Springer.
  • Dewey, F. M., & Grant-Downton, R. (2016). Botrytis-biology, detection and quantification. In Y. Elad & S. Fillinger (Eds.), Botrytis–the fungus, the pathogen and its management in agricultural systems (pp. 17–34). Switzerland: Springer.
  • Diao, W. R., Hu, Q. P., Zhang, H., & Xu, J. G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1), 109–116.
  • Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., … Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749.
  • Elad, Y. (2000a). Trichoderma harzianum T39 preparation for biocontrol of plant diseases – control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology, 10(4), 499–507.
  • Elad, Y. (2000b). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19(8), 709–714.
  • Elad, Y. (2001). TRICHODEX: Commercialization of Trichoderma harzianum T39 – a case study. In P. Jarvis (Ed.), Agro report, biopesticides: Trends and opportunities (pp. 45–50). Richmond: PJB.
  • Elad, Y. (2003). Biological control of Botrytis cinerea. IOBC WPRS Bulletin, 26(9), 7–8.
  • Elad, Y. (2016). Cultural and integrated control of Botrytis spp. In Y. Elad & S. Fillinger (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 149–164). Cham: Springer.
  • Elad, Y., Pertot, I., Prado, A. M. C., & Stewart, A. (2016). Plant hosts of Botrytis spp. In Y. Elad & S. Fillinger (Eds.), Botrytis – the fungus, the pathogen and its management in agricultural systems (pp. 413–486). Cham: Springer.
  • Elad, Y., & Stewart, A. (2004). Microbial control of Botrytis spp. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 223–241). Dordrecht: Kluwer Academic.
  • Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2007). Microbial control of Botrytis spp. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 1–8). Dordrecht: Kluwer Academic.
  • Elmer, P. A., & Köhl, J. (1998). The survival and saprophytic competitive ability of the Botrytis spp. Antagonist Ulocladium atrum in lily canopies. European Journal of Plant Pathology, 104(5), 435–447.
  • Elmer, P. A. G., & Michailides, T. J. (2004). Epidemiology of Botrytis cinerea in orchard and vine crops. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 243–272). Dordrecht: Kluwer Academic.
  • Elmer, P. A. G., Parry, F. J., Reglinski, T., Wurms, K. V., Wood, P. N., Agnew, R. H., … Taylor, J. T. (2009). Development of biologically-based products for control of Botrytis in wine grapes. New Zealand Plant Protection Society. Poster Abstract, p.397. Retrieved from https://www.nzpps.org/journal/62/nzpp_623970.pdf
  • Elmhirst, J. F., Haselhan, C., & Punja, Z. K. (2011). Evaluation of biological control agents for control of Botrytis blight of geranium and powdery mildew of rose. Canadian Journal of Plant Pathology, 33(4), 499–505.
  • Emmert, E. A., & Handelsman, J. (1999). Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiology Letters, 171(1), 1–9.
  • Fan, F., Hamada, M. S., Li, N., Li, G. Q., & Luo, C. X. (2017). Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China. Plant Disease, 101(4), 601–606.
  • Farquhar, S., Goff, N. M., Shadbeh, N., Samples, J., Ventura, S., Sanchez, V., & Davis, S. (2009). Occupational health and safety status of indigenous and Latino farmworkers in Oregon. Journal of Agricultural Safety and Health, 15, 89–102.
  • FRAC. (2014). Fungicide Resistance Action Committee Pathogen Risk List. Retrieved from http://www.frac.info/publications
  • FRAC. (2017). Fungicides sorted by mode of action (including FRAC Code numbering). Retrieved from http://www.frac.info/publications
  • Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.
  • Fravel, D. R., Deahl, K. L., & Stommel, J. R. (2005). Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biological Control, 34(2), 165–169.
  • Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., & Dag, A. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110(4), 361–370.
  • Fritz, R., Lanen, C., Colas, V., & Leroux, P. (1997). Inhibition of methionine biosynthesis in Botrytis cinerea by the anilinopyrimidine fungicide pyrimethanil. Pesticide Science, 49(1), 40–46.
  • Fu, J., Cheng, K., Zhang, Z. M., Fang, R. Q., & Zhu, H. L. (2010). Synthesis, structure and structure–activity relationship analysis of caffeic acid amides as potential antimicrobials. European Journal of Medicinal Chemistry, 45(6), 2638–2643.
  • Gachango, E., Kirk, W., Schafer, R., & Wharton, P. (2012). Evaluation and comparison of biocontrol and conventional fungicides for control of postharvest potato tuber diseases. Biological Control, 63(2), 115–120.
  • Gao, P., Qin, J., Li, D., & Zhou, S. (2018). Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PloS one, 13(1), e0190932.
  • Ge, B., Liu, B., Nwet, T. T., Zhao, W., Shi, L., & Zhang, K. (2016). Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PloS one, 11(11), e0166079.
  • Genescope. (2002). Botrytis cinerea Estimated losses to vineyards in France (Annual Report, UIPP, 2002).
  • Gong, C., Liu, Y., Liu, S. Y., Cheng, M. Z., Zhang, Y., Wang, R. H., … Wang, A. X. (2017). Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biology and Technology, 123, 83–93.
  • Grabke, A., Fernández-Ortuño, D., & Schnabel, G. (2013). Fenhexamid resistance in Botrytis cinerea from strawberry fields in the Carolinas is associated with four target gene mutations. Plant Disease, 97(2), 271–276.
  • Handelsman, J. (2002). Future trends in biocontrol. Biological control of crop diseases. New York, NY: Marcel Dekker, 443–448.
  • Hang, N. T. T., Oh, S. O., Kim, G. H., Hur, J. S., & Koh, Y. J. (2005). Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. The Plant Pathology Journal, 21(1), 59–63.
  • Haydu, J. J., & Legard, D. E. (2003). An economic analysis of preharvest fungicide applications to control Botrytis fruit rot in annual strawberries in Florida. Hortscience, 38(1), 124–127.
  • Hildebrand, P. D., McRae, K. B., & Lu, X. (2001). Factors affecting flower infection and disease severity of lowbush blueberry by Botrytis cinerea. Canadian Journal of Plant Pathology, 23(4), 364–370.
  • Hjeljord, L. G., Strømeng, G. M., Tronsmo, A., Sønsteby, A., & Stensvand, A. (2011). Attempts to reduce strawberry gray mold (Botrytis cinerea) in Norway using fungal antagonists. Eur. J. Plant Sei. Biotechnol, 5, 78–85.
  • Howell, G. S. (2001). Sustainable grape productivity and the growth–yield relationship: A review. American Journal of Enology and Viticulture, 52, 165–174.
  • Janisiewicz, W. J., & Jeffers, S. N. (1997). Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Protection, 16(7), 629–633.
  • Jeger, M. J., Jeffries, P., Elad, Y., & Xu, X. M. (2009). A generic theoretical model for biological control of foliar plant diseases. Journal of Theoretical Biology, 256(2), 201–214.
  • Jespers, A. B., Davidse, L. C., & Dewaard, M. A. (1993). Biochemical effects of the phenylpyrrole fungicide fenpiclonil in Fusarium sulphureum (Schlecht). Pesticide Biochemistry and Physiology, 45(2), 116–129.
  • Johnston, P. R., Hoksbergen, K., Park, D., & Beever, R. E. (2014). Genetic diversity of Botrytis in New Zealand vineyards and the significance of its seasonal and regional variation. Plant Pathology, 63(4), 888–898.
  • Kanetis, L., Exarchou, V., Charalambous, Z., & Goulas, V. (2017). Edible coating composed of chitosan and Salvia fruticosa Mill. Extract for the control of grey mould of table grapes. Journal of the Science of Food and Agriculture, 97(2), 452–460.
  • Kapongo, J. P., Shipp, L., Kevan, P., & Sutton, J. C. (2008). Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of gray mold in greenhouse tomato and sweet pepper. Biological Control, 46(3), 508–514.
  • Kim, Y. S., Song, J. G., Lee, I. K., Yeo, W. H., & Yun, B. S. (2013). Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology, 41(2), 108–111.
  • Klein, D., & Eveleigh, D. E. (1998). Ecology of Trichoderma. In C. E. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocaldium, vol 1. Basic biology, taxonomy and genetics (pp. 57–73). London: Taylor and Francis.
  • Köhl, J., Molhoek, W. M. L., van der Plas, C. H., & Fokkema, N. J. (1996). Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field conditions. Phytopathology, 85, 393–401.
  • Koul, O. (2011). Microbial biopesticides: Opportunities and challenges. CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 6, 1–26.
  • Lahlali, R., Brostaux, Y., & Jijakli, M. H. (2011). Control of apple blue mold by the antagonistic yeast Pichia anomala strain K: screening of UV protectants for preharvest application. Plant Disease, 95, 311–316.
  • Lee, J. P., Lee, S. W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., & Moon, B. J. (2006). Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biological Control, 37(3), 329–337.
  • Le Floch, G., Vallance, J., Benhamou, N., & Rey, P. (2009). Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato gray mold biocontrol. Biological Control, 50(3), 288–298.
  • Leroux, P. (2004). Chemical control of Botrytis and its resistance to chemical fungicides. In Y. Elad, B. Williamson, P. Tudzynski, & N. Delen (Eds.), Botrytis: Biology, pathology and control (pp. 195–222). Dordrecht: Kluwer Academic.
  • Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., … Chapeland, F. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58(9), 876–888.
  • Li, Y., Shao, X., Xu, J., Wei, Y., Xu, F., & Wang, H. (2017). Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chemistry, 234, 62–67.
  • Lynch, J. M. (1992). Environmental implications of the release of biocontrol agents. In E. C. Tjamos, G. C. Papavizas, & R. J. Cook (Eds.), Biological control of plant diseases (pp. 389–397). New York, NY: Springer.
  • Mahaffee, W. F., & Backman, P. A. (1993). Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology, 83(10), 1120–1125.
  • Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56–62.
  • Marrone, P. G. (2002). An effective biofungicide with novel modes of action. Pesticide Outlook, 13(5), 193–194.
  • Martinez, A. J. (2012). Natural fungicides obtained from Plants. In: Dhanasekaran, D. (Ed.), Fungicides for Plant and Animal Diseases. ISBN: 978-953-307-804-5. INTECH http://www.intechopen.com/books/fungicides-for-plant-and-animal-diseases/natural-fungicides-obtained-from-plants
  • Martínez-Absalón, S., Rojas-Solís, D., Hernández-León, R., Prieto-Barajas, C., Orozco- Mosqueda, M. D. C., Peña-Cabriales, J. J., … Santoyo, G. (2014). Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the gray mold phytopathogen Botrytis cinerea. Biocontrol Science and Technology, 24(12), 1349–1362.
  • Martínez-Romero, D., Serrano, M., Bailén, G., Guillén, F., Zapata, P. J., Valverde, J. M., & Valero, D. (2008). The use of a natural fungicide as an alternative to preharvest synthetic fungicide treatments to control lettuce deterioration during postharvest storage. Postharvest Biology and Technology, 47(1), 54–60.
  • McLean, K. L., Hunt, J. S., Stewart, A., Wite, D., Porter, I. J., & Villalta, O. (2012). Compatibility of a Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Protection, 33, 94–100.
  • Monteiro, S., Carreira, A., Freitas, R., Pinheiro, A. M., & Ferreira, R. B. (2015). A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts. PloS one, 10(4), doi:e0122095.
  • Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. New York, NY: Cambridge University Press.
  • Nally, M. C., Pesce, M. V., Maturano, Y. P., Muñoz, C. J., Combina, M., Toro, M. E., … Vazquez, F. (2012). Biocontrol of Botrytis cinerea in table grapes by non- pathogenic Saccharomyces cerevisiae autochthonous yeasts from viticultural environments (San Juan, Argentina). Journal of Postharvest Biology & Technology, 64, 40–48.
  • Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., & Niu, D. (2017). Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET-and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Frontiers in Plant Science, 8, 238.
  • Nihorimbere, V., Ongena, M., Brostaux, Y., Kakana, P., Jourdan, E., & Thonart, P. (2010). Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: Reduction of local Fusarium disease and growth promotion. African Journal of Microbiology Research, 4(11), 1135–1142.
  • Organisation for Economic Co-operation and Development (OECD). (2003). Series on pesticides no. 18. Guidance for registration requirements for microbial pesticides. Retrieved from http://www.oecd.org/dataoecd/4/23/28888446.pdf
  • Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85–92.
  • Patel, S., & Saraf, M. (2017). Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Archives of Phytopathology and Plant Protection, 50(5–6), 228–238.
  • Percival, D. (2013). Wild blueberry yield potential and canopy management strategies. Conference paper: annual meeting of the wild blueberry producers association of Nova Scotia (WBPANS) , Truro, Nova Scotia, Canada. Retrieved from http://www.researchgate.net/publication/258821362
  • Percival, D. C., Abbey, J., Lu, H., & Harris, L. (2016). Use of biofungicides to address conventional Botrytis blight control challenges in wild blueberry production. In XI international Vaccinium symposium 1180 (pp. 241–248).
  • Percival, D. C., Fisher, K. H., & Sullivan, J. A. (1994). Use of fruit zone leaf removal with Vitis vinifera L. cv. Riesling grapevines. I. Effects on canopy structure, microclimate, bud survival, shoot density, and vine vigor. American Journal of Enology and Viticulture, 45(2), 123–132.
  • Raspor, P., Miklič-Milek, D., Avbelj, M., & Čadež, N. (2010). Biocontrol of gray mold disease on grape caused by Botrytis cinerea with autochthonous wine yeasts. Food Technology and Biotechnology, 48(3), 336–343.
  • Raupach, G. S., & Kloepper, J. W. (1998). Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88(11), 1158–1164.
  • Reeh, K. W., & Cutler, G. C. (2013). Laboratory efficacy and fungicide compatibility of Clonostachys rosea against Botrytis blight on lowbush blueberry. Canadian Journal of Plant Science, 93(4), 639–642.
  • Reeh, K. W., Hillier, N. K., & Cutler, G. C. (2014). Potential of bumble bees as bio-vectors of Clonostachys rosea for Botrytis blight management in lowbush blueberry. Journal of Pest Science, 87(3), 543–550.
  • Reglinski, T., Elmer, P. A. G., Taylor, J. T., Wood, P. N., & Hoyte, S. M. (2010). Inhibition of Botrytis cinerea growth and suppression of botrytis bunch rot in grapes using chitosan. Plant Pathology, 59(5), 882–890. doi:10.1111/ppa.2010.59.issue-5
  • Roger, F., & Keinath, A. (2010). Biofungicides and chemicals for managing diseases in organic vegetable production. Clemson University Cooperative Ext. Information Leaflet 88. Retrieved from http://www.clemson.edu/psapublishing/PAGES/PLNTPATH/IL88.pdf
  • Ronseaux, S., Clément, C., & Barka, E. A. (2013). Interaction of Ulocladium atrum, a potential biological control agent, with Botrytis cinerea and grapevine plantlets. Agronomy, 3(4), 632–647.
  • Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea – history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.
  • Ruelas, C., Tiznado-Hernández, M. E., Sánchez-Estrada, A., Robles-Burgueño, M. R., & Troncoso-Rojas, R. (2006). Changes in phenolic acid content during Alternaria alternata infection in tomato fruit. Journal of Phytopathology, 154(4), 236–244.
  • Rupp, S., Weber, R. W., Rieger, D., Detzel, P., & Hahn, M. (2017). Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Frontiers in Microbiology, 7, 2075.
  • Samuel, S., Veloukas, T., Papavasileiou, A., & Karaoglanidis, G. S. (2012). Differences in frequency of transposable elements presence in Botrytis cinerea populations from several hosts in Greece. Plant Disease, 96, 1286–1290.
  • Sarrocco, S., Matarese, F., Baroncelli, R., Vannacci, G., Seidl-Seiboth, V., Kubicek, C. P., & Vergara, M. (2017). The constitutive endopolygalacturonase TvPG2 regulates the induction of plant systemic resistance by Trichoderma virens. Phytopathology, 107(5), 537–544.
  • Schmid, F., Moser, G., Müller, H., & Berg, G. (2011). Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Applied and Environmental Microbiology, 77(6), 2188–2191.
  • Scholefield, P., & Morison, J. (2010). Assessment of economic cost of endemic pests and diseases on the Australian grape and wine industry. Adelaide: Grape and Wine Research and Development Corporation. Retrieved from http://www.econsearch.com.au/pages/completed-projects/agriculture/agri12.php
  • Sikkema, J., De Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201–222.
  • Siripornvisal, S., Rungprom, W., & Sawatdikarn, S. (2009). Antifungal activity of essential oils derived from medicinal plants against gray mold (Botrytis cinerea). Asian Journal of Food and Agro-Industry, Special issue, 229–223.
  • Soliman, H. M., El-Metwally, M. A., Elkahky, M. T., & Badawi, W. E. (2015). Alternatives to chemical control of gray mold disease on cucumber caused by Botrytis cinerea Pers. Asian J Plant Pathol, 9, 1–15.
  • Sreevidya, M., Gopalakrishnan, S., Melø, T. M., Simic, N., Bruheim, P., Sharma, M., … Alekhya, G. (2015). Biological control of Botrytis cinerea and plant growth promotion potential by Penicillium citrinum in chickpea (Cicer arietinum L.). Biocontrol Science and Technology, 25(7), 739–755.
  • Steiger, D. (2007). Global economic importance of Botrytis protection. In P. Fourie & M. Vivier (Eds.), Book of Abstracts, 14th International Botrytis Symposium (pp. 21–26). Cape Town.
  • Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218.
  • Teixidó, N., Usall, J., Nunes, C., Torres, R., Abadias, M., & Viñas, I. (2010). Preharvest strategies to control postharvest diseases in fruits. In D. Prusky & M. L. Gullino (Eds.), Postharvest pathology (pp. 89–106). Dordrecht: Springer.
  • Thomidis, T., Pantazis, S., Navrozidis, E., & Karagiannidis, N. (2015). Biological control of fruit rots on strawberry and grape by BOTRY-Zen. New Zealand Journal of Crop and Horticultural Science, 43(1), 68–72.
  • Tripathi, P., Dubey, N. K., & Shukla, A. K. (2008). Use of some essential oils as post-harvest botanical fungicides in the management of gray mold of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology, 24, 39–46.
  • Tzortzakis, N. G., & Economakis, C. D. (2007). Antifungal activity of lemongrass (Cymbopogon citrates L.) essential oil against key postharvest pathogens. Innovative Food Science and Emerging Technologies, 8, 253–258.
  • Usta, C. (2013). Microorganisms in biological pest control – a review (bacterial toxin application and effect of environmental factors). In . Silva-Opps (Ed.), Current progress in biological research (pp. 287–317). London, UK: InTech Publishers.
  • Vio-Michaelis, S., Apablaza-Hidalgo, G., Gómez, M., Peña-Vera, R., & Montenegro, G. (2014). Antifungal activity of three Chilean plant extracts on Botrytis cinerea. Botanical Sciences, 90(2), 179–183.
  • Vrind, T. A. (2005). The Botrytis problem in figures. Acta Horticulturae, 669, 99–102.
  • Walker, A. S., Gautier, A., Confais, J., Martinho, D., Viaud, M., Le Pêcheur, P., … Fournier, E. (2011). Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology, 101(12), 1433–1445.
  • Walker, A. S., Gladieux, P., Decognet, V., Fermaud, M., Confais, J., Roudet, J., & Fournier, E. (2015). Population structure and temporal maintenance of the multi-host fungal pathogen Botrytis cinerea: causes and implications for disease management. Environmental Microbiology, 17(4), 1261–1274.
  • Wallace, R. L., Hirkala, D. L., & Nelson, L. M. (2018). Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 117, 13–20.
  • Whipps, J. M., & Lumsden, R. D. (2001). Commercial use of fungi as plant disease biological control agents: Status and prospects. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents (pp. 9–22). Wallingford: CABI.
  • Williamson, B., Duncan, G. H., Harrison, J. G., Harding, L. A., Elad, Y., & Zimand, G. (1995). Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycological Research, 99, 1303–1310.
  • Wilson, C. L., Solar, J. M., El Ghaouth, A., & Wisniewski, M. E. (1997). Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Disease, 81(2), 204–210.
  • Xu, X. M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101(9), 1024–1031.
  • Yahaya, S. M., Fagwalawa, L. D., & Lawan, M. (2015). Influence of airborne and seed inoculum in the initiation of leaf, stem, and root infection by systemic Botrytis cinerea in Lettuce (Lactuca sativa). Plant Pathology and Microbiology Microbiology, 6, 11.
  • Yedidia, I., Benhamou, N., & Chet, I. (1999). Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65(3), 1061–1070.
  • Yermiyahu, U., Shamai, I., Peleg, R., Dudai, N., & Shtienberg, D. (2006). Reduction of Botrytis cinerea sporulation in sweet basil by altering the concentrations of nitrogen and calcium in the irrigation solution. Plant Pathology, 55(4), 544–552.
  • Ziedan, E. H. E., & Farrag, E. S. H. (2008). Fumigation of peach fruits with essential oils to control postharvest decay. Research Journal of Agriculture and Biological Sciences, 4(5), 512–519.
  • Zimand, G., Elad, Y., & Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 86(11), 1255–1260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.