174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Influence of metal stress on production of volatile inhibitory compounds by endophytes against Ganoderma boninense

, , &
Pages 860-876 | Received 20 Jun 2018, Accepted 21 Apr 2019, Published online: 02 May 2019

References

  • Aochi, Y. O., & Farmer, W. J. (2005). Impact of soil microstructure on the molecular transport dynamics of 1,2-dichloroethane. Geoderma, 127(1–2), 137–153.
  • Asensio, D., Rapparini, F., & Penuelas, J. (2012). AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry, 77, 149–161.
  • Ben Sghaier, M., Chraief, I., Skandrani, I., Bouhlel, I., Boubaker, J., Kilani, S., … Ghedira, K. (2007). Chemical composition and antimicrobial activity of the essential oil of Teucrium ramosissimum (Lamiaceae). Chemistry & Biodiversity, 4(7), 1480–1486.
  • Carson, C. F., Mee, B. J., & Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy, 46(6), 1914–1920.
  • Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., & Colvin, N. (2005). Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiological Research, 160(1), 75–81.
  • Cooney, J. M., Lauren, D. R., & di Menna, M. E. (2001). Impact of competitive fungi on trichothecene production by Fusarium graminearum. Journal of Agricultural and Food Chemistry, 49(1), 522–526.
  • Cooper, R., Flood, J., & Rees, R. W. (2011). Ganoderma boninense in oil palm plantations: Current thinking on epidemiology, resistance and pathology. The Plant, 87, 515–526.
  • Davis, T. S., Crippen, T. L., Hofstetter, R. W., & Tomberlin, J. K. (2013). Microbial volatile emissions as insect semiochemicals. Journal of Chemical Ecology, 39(7), 840–859.
  • Dos Santos, P. J. C., Savi, D. C., Gomes, R. R., Goulin, E. H., Senkiv, C. D., Tanaka, F. A. O., … Glienke, C. (2016). Diaporthe endophytica and D-terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186-187, 153–160.
  • Fiedler, K., Schutz, E., & Geh, S. (2001). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204(2–3), 111–121.
  • Iacobellis, N. S., Lo Cantore, P., Capasso, F., & Senatore, F. (2005). Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. Journal of Agricultural and Food Chemistry, 53(1), 57–61.
  • Jelen, H., Blaszczyk, L., Chelkowski, J., Rogowicz, K., & Strakowska, J. (2014). Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycological Progress, 13(3), 589–600.
  • Kanchiswamy, C. N., Mainoy, M., & Maffei, M. E. (2015). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science, 6(23), 1–23.
  • Keramati, S., Pirdashti, H., Babaeizad, V., & Dehestani, A. (2016). Essential oil composition of sweel basil (Ocimum basilicum L.) in symbiotic relationship with Piriformospora indica and paclobutrazol application under salt stress. Acta Biologica Hungarica, 67, 412–423.
  • Kishimoto, K., Matsui, K., Ozawa, R., & Takabayashi, J. (2007). Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. Journal of General Plant Pathology, 73(1), 35–37.
  • Kollner, T. G., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C., Gershenzon, J., & Degenhardt, J. (2008). A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. The Plant Cell Online, 20(2), 482–494.
  • Korpi, A., Jarnberg, J., & Pasanen, A. L. (2009). Microbial volatile organic compounds. Critical Reviews in Toxicology, 39(2), 139–193.
  • Lahlali, R., & Hijri, M. (2010). Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiology Letters, 311(2), 152–159.
  • Lee, S. Y., Tindwa, H., Lee, Y. S., Naing, K. W., Hong, S. H., Nam, Y., & Kim, K. Y. (2012). Biocontrol of anthracnose in pepper using chitinase, β-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. Journal of Microbiology and Biotechnology, 22(10), 1359–1366.
  • Loughlin, R., Gilmore, B. F., McCarron, P. A., & Tunney, M. M. (2008). Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Letters in Applied Microbiology, 46(4), 428–433.
  • Macias-Rubalcava, M. L., Hernandez-Bautista, B. E., Oropeza, F., Duarte, G., Gonzalez, M. C., Glenn, A. E., … Anaya, A. L. (2010). Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. Journal of Chemical Ecology, 36(10), 1122–1131.
  • Maffei, M. E., Gertsch, J., & Appendino, G. (2011). Plant volatiles: Production, function and pharmacology. Natural Product Reports, 28(8), 1359–1380.
  • Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56–62.
  • Martins, C. D., do Nascimento, E. A., de Morais, S. A. L., de Oliveira, A., Chang, R., Cunha, L. C. S., … de Aquino, F. J. T. (2015). Chemical constituents and evaluation of antimicrobial and cytotoxic activities of Kielmeyera coriacea Mart. & Zucc. essential oils. Evidence-Based Complementary and Alternative Medicine, 2015, 1–9. doi: 10.1155/2015/842047
  • Mburu, D. M., Ndung’u, M. W., Maniania, N. K., & Hassanali, A. (2011). Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellency toward the termite Macrotermes michaelseni. Journal of Experimental Biology, 214(6), 956–962.
  • Mercier, J., & Manker, D. C. (2005). Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Protection, 24(4), 355–362.
  • Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L., & Garibaldi, A. (2011). Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiology Ecology, 76(2), 342–351.
  • Morath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2-3), 73–83.
  • Njume, C., Afolayan, A. J., Green, E., & Ndip, R. N. (2011). Volatile compounds in the stem bark of Sclerocarya birrea (Anacardiaceae) possess antimicrobial activity against drug-resistant strains of Helicobacter pylori. International Journal of Antimicrobial Agents, 38(4), 319–324.
  • Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2014). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701–712.
  • Petrini, O. (1991). Fungal endophytes of Tree leaves. In J. H. Andrews & S. S. Hirano (Eds.), Microbial Ecology of leaves. Brock/springer series in contemporary bioscience (pp. 179–197). New York, NY: Springer.
  • Polizzi, V., Adams, A., Malysheva, S. V., De Saeger, S., Van Peteghem, C., Moretti, A., … De Kimpe, N. (2012). Identification of volatile markers for indoor fungal growth and chemotaxonomic classification of Aspergillus species. Fungal Biology, 116(9), 941–953.
  • Quin, M. B., Flynn, C. M., & Schmidt-Dannert, C. (2014). Traversing the fungal terpenome. Natural Product Reports, 31(10), 1449–1473.
  • Rhee, Y. J., Hillier, S., & Gadd, G. M. (2012). Lead transformation to pyromorphite by fungi. Current Biology, 22(3), 237–241.
  • Rivero-Cruz, I., Duarte, G., Navarrete, A., Bye, R., Linares, E., & Mata, R. (2011). Chemical composition and antimicrobial and spasmolytic properties of Poliomintha longiflora and Lippia graveolens essential oils. Journal of Food Science, 76(2), C309–C317.
  • Saikkonen, K., Faeth, S. H., Helander, M., & Sullivan, T. J. (1998). Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics, 29, 319–343.
  • Saxena, D., Tewari, A., & Rai, D. (2014). In vitro antagonistic assessment of T. Harzianum PBT 23 against plant pathogenic fungi. Journal of Microbiology and Biotechnology Research, 4, 59–65.
  • Siddiquee, S., Yusuf, U. K., Hossain, K., & Jahan, S. (2009). In vitro studies on the potential Trichoderma harzianum for antagonistic properties against Ganoderma boninense. Journal of Food Agriculture & Environment, 7(3–4), 970–976.
  • Sim, C. S. F., Cheow, Y. L., Ng, S. L., & Ting, A. S. Y. (2018). Discovering metal-tolerant endophytic fungi from the phytoremediator plant Phragmites. Water, Air, & Soil Pollution, 229(3), 68.
  • Strobel, G. A., Dirkse, E., Sears, J., & Markworth, C. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 2943–2950.
  • Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., & Sears, J. (2011). An endophytic/pathogenic Phoma sp from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 320(2), 87–94.
  • Ting, A., Mah, S., & Tee, C. (2010). Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense Race 4. American Journal of Agricultural and Biological Sciences, 5, 177–182.
  • Ting, A. S. Y., & Jioe, E. (2016). In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biological Control, 96, 57–63.
  • Van Lancker, F., Adams, A., Delmulle, B., De Saeger, S., Moretti, A., Van Peteghem, C., & De Kimpe, N. (2008). Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. Journal of Environmental Monitoring, 10(10), 1127–1133.
  • Weaver, L., Michels, H. T., & Keevil, C. W. (2010). Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Letters in Applied Microbiology, 50(1), 18–23.
  • Werner, A., Napierala-Filipiak, A., Mardarowicz, M., & Gawdzik, J. (2004). The effects of heavy metals, content of nutrients and inoculation with mycorrhizal fungi on the level of terpenoids in roots of Pinus sylvestris seedlings. Acta Physiologiae Plantarum, 26, 187–196.
  • Worapong, J., Strobel, G., Ford, E. J., Li, J. Y., Baird, G., & Hess, W. M. (2001). Muscodor albus anam. gen. et sp. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon, 79, 67–79.
  • Wu, Y. C., Yuan, J., Yaoyao, E., Raza, W., Shen, Q. R., & Huang, Q. W. (2015). Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens. Journal of Basic Microbiology, 55(9), 1104–1117.
  • Yurnaliza, I., Aryantha, N. P., Esyanthi, R. R., & Agus, S. (2014). Antagonistic activity assessment of fungal endophytes from oil palm tissues against Ganoderma boninense Pat. Plant Pathology Journal, 13, 257–267.
  • Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia. 1. Peninsular Malaysia. Environmental Geochemistry and Health, 26(4), 343–357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.