2,170
Views
14
CrossRef citations to date
0
Altmetric
Articles

The potential of highly nutritious frozen stages of Tyrophagus putrescentiae as a supplemental food source for the predatory mite Amblyseius swirskii

, , &
Pages 403-417 | Received 11 Jul 2019, Accepted 23 Jan 2020, Published online: 06 Feb 2020

References

  • Adar, E., Inbar, M., Gal, S., Gan-Mor, S., & Palevsky, E. (2014). Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. BioControl, 59(3), 307–317.
  • Arlian, L. G., Vyszenski-Moher, D. L., Johansson, S. G. O., & van Hage-Hamsten, M. (1997). Allergenic characterization of Tyrophagus putrescentiae using sera from occupationally exposed farmers. Annals of Allergy, Asthma & Immunology, 79(6), 525–529.
  • Barbosa, M. F., & de Moraes, G. J. (2015). Evaluation of astigmatid mites as factitious food for rearing four predaceous phytoseiid mites (Acari: Astigmatina; Phytoseiidae). Biological Control, 91, 22–26.
  • Bolckmans, K. J. F., & van Houten, Y. M. (2006). WO Patent No. WO/2006/057552. https://patents.google.com/patent/WO2006057552A1/en
  • Broufas, G. D., & Koveos, D. S. (2000). Effect of different pollens on development, survivorship and reproduction of Euseius finlandicus (Acari: Phytoseiidae). Environmental Entomology, 29(4), 743–749.
  • Calvo, F. J., Bolckmans, K., & Belda, J. E. (2011). Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl, 56(2), 185–192.
  • Calvo, F. J., Knapp, M., van Houten, Y. M., Hoogerbrugge, H., & Belda, J. E. (2015). Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent? Experimental and Applied Acarology, 65(4), 419–433.
  • Castagnoli, M. (1989). Biology and possibilities of mass rearing of Amblyseius cucumeris (Oud.) (Acarina: Phytoseiidae) using Dermatophagoides farinae Hughes (Acarina: Pyroglyphidae) as prey. Redia, 72, 389–401.
  • Czaikowska, B., van de Vrie, M., Kropczynska, D. (1988). Mites of the genus Tyrophagus as pests of ornamentals in greenhouses. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 53(2b), 799–809.
  • De Leon-Facundo, J. B., & Corpuz-Raros, L. A. (2005). Survival, consumption and reproduction of Amblyseius longispinosus (Evans) (Acari: Phytoseiidae) on various food items and its comparative biology on two species of spider mites. Philippine Agricultural Scientist, 88(1), 72–77.
  • El-Magsodi, M. O., Bossier, P., Sorgeloos, P., & van Stappen, G. (2014). Hatching and nutritional quality of Artemia cysts progressively deteriorates as a function of increased exposure to hydration/dehydration cycles. Aquaculture International, 22(5), 1515–1532.
  • Erban, T., Rybanska, D., & Hubert, J. (2015). Population growth of the generalist mite Tyrophagus putrescentiae (Acari: Acaridida) following adaptation to high- or low-fat and high- or low-protein diets and the effect of dietary switch. Environmental Entomology, 44(6), 1599–1604.
  • Evans, E. W., Stevenson, A. T., & Richards, D. R. (1999). Essential versus alternative foods of insect predators: Benefits of a mixed diet. Oecologia, 121(1), 107–112.
  • Faraji, F., Janssen, A., & Sabelis, M. W. (2002). Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecological Entomology, 27(6), 660–664.
  • Fidgett, M. J., & Stinson, C. S. A. (2008). WO patent No. WO2008/015393. https://patents.google.com/patent/WO2008015393A2/en
  • Gerson, U., & Weintraub, P. G. (2007). Mites for the control of pests in protected cultivation. Pest Management Science, 63(7), 658–676.
  • Goleva, I., & Zebitz, C. P. (2013). Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Experimental and Applied Acarology, 61(3), 259–283.
  • Green, W. F., & Woolcock, A. J. (1978). Tyrophagus putrescentiae: An allergenically important mite. Clinical & Experimental Allergy, 8(2), 135–144.
  • Guichou, S., Kreiter, S., Ferrero, M., & Maignet, P. (2015). U.S. Patent No. US20150296759A1. Retrieved from http://patents.google.com/patent/US20150296759A1/en
  • Hoogerbrugge, H., van Houten, Y., van Baal, E., & Bolckmans, K. (2008). Alternative food sources to enable establishment of Amblyseius swirskii (Athias-Henriot) on chrysanthemum without pest presence. IOBC/WPRS Bulletin, 32, 79–82.
  • Howard, R. W., Kuwahara, Y., Suzuki, H., & Suzuki, T. (1988). Pheromone study on acarid mites. XII. Characterization of the hydrocarbons and external gland morphology of the opishonotal glands of six species of mites (Acari: Astigmata). Applied Entomology and Zoology, 23(1), 58–66.
  • Huang, N., Enkegaard, A., Osborne, L. S., Ramakers, P. M., Messelink, G. J., Pijnakker, J., & Murphy, G. (2011). The banker plant method in biological control. Critical Reviews in Plant Sciences, 30(3), 259–278.
  • Huang, H., Xu, X., Lv, J., Li, G., Wang, E., & Gao, Y. (2013). Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus barkeri (Acari: Phytoseiidae). Biocontrol Science and Technology, 23(11), 1231–1244.
  • Hulshof, J., Ketoja, E., & Vänninen, I. (2003). Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomologia Experimentalis et Applicata, 108(1), 19–32.
  • Janssen, A., & Sabelis, M. W. (1992). Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites. Experimental and Applied Acarology, 14, 233–250.
  • Johansson, E., Johansson, S. G. O., & van Hage-Hamsten, M. (1994). Allergenic characterization of Acarus siro and Tyrophagus putrescentiae and their cross reactivity with Lepidoglyphus destructor and Dermatophagoides pteronyssinus. Clinical & Experimental Allergy, 24(8), 743–751.
  • Kuwahara, Y., Ishii, S., & Fukami, H. (1975). Neryl formate: Alarm pheromone of the cheese mite, Tyrophagus putrescentiae (Schrank) (Acarina. Acaridae). Cellular and Molecular Life Sciences, 31(10), 1115–1116.
  • Léger, P., Bengtson, D. A., Simpson, K. L., & Sorgeloos, P. (1986). The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology: An Annual Review, 24, 521–623.
  • Leman, A., & Messelink, G. J. (2015). Supplemental food that supports both predator and pest: A risk for biological control? Experimental and Applied Acarology, 65(4), 511–524.
  • Massaro, M., Martin, J. P. I., & de Moraes, G. J. (2016). Factitious food for mass production of predaceous phytoseiid mites (Acari: Phytoseiidae) commonly found in Brazil. Experimental and Applied Acarology, 70(4), 411–420.
  • Mayntz, D., & Toft, S. (2001). Nutrient composition of the prey's diet affects growth and survivorship of a generalist predator. Oecologia, 127(2), 207–213.
  • McMurtry, J. A., & Croft, B. A. (1997). Life-styles of phytoseiid mites and their roles in biological control. Annual Review of Entomology, 42(1), 291–321.
  • McMurtry, J. A., De Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297–321.
  • Messelink, G. J., Bennison, J., Alomar, O., Ingegno, B. L., Tavella, L., Shipp, L., … Wäckers, F. L. (2014). Approaches to conserving natural enemy populations in greenhouse crops: Current methods and future prospects. BioControl, 59(4), 377–393.
  • Messelink, G. J., Van Maanen, R., van Holstein-Saj, R., Sabelis, M. W., & Janssen, A. (2010). Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl, 55(3), 387–398.
  • Messelink, G. J., van Maanen, R., van Steenpaal, S. E., & Janssen, A. (2008). Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biological Control, 44(3), 372–379.
  • Midthassel, A., Leather, S. R., & Baxter, I. H. (2013). Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Experimental and Applied Acarology, 61(1), 69–78.
  • Midthassel, A., Leather, S., Wright, D. J., Baxter, I. H., Farman, D. I., & Cork, A. (2016). An astigmatid defence volatile against a phytoseiid mite. Entomologia Experimentalis et Applicata, 158(1), 97–107.
  • Muñoz-Cárdenas, K., Fuentes, L. S., Cantor, R. F., Rodríguez, C. D., Janssen, A., & Sabelis, M. W. (2014). Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Experimental and Applied Acarology, 62(1), 19–32.
  • Nguyen, D. T., Vangansbeke, D., & de Clercq, P. (2014). Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Experimental and Applied Acarology, 62(2), 181–194.
  • Nguyen, D. T., Vangansbeke, D., Lü, X., & de Clercq, P. (2013). Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. BioControl, 58(3), 369–377.
  • Nomikou, M., Janssen, A., & Sabelis, M. W. (2003). Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Experimental & Applied Acarology, 31(1-2), 15–26.
  • Nomikou, M., Janssen, A., Schraag, R., & Sabelis, M. W. (2002). Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Experimental & Applied Acarology, 27, 57–68.
  • Oliveira, C. M. D., Návia, D., & Frizzas, M. R. (2007). First record of Tyrophagus putrescentiae (Schrank)(Acari: Acaridae) in soybean plants under no tillage in Minas Gerais, Brazil. Ciência Rural, 37(3), 876–877.
  • Pijnakker, J., Arijs, Y., de Souza, A., Cellier, M., & Wäckers, F. (2016). The use of Typha angustifolia (cattail) pollen to establish the predatory mites Amblyseius swirskii, Iphiseius degenerans, Euseius ovalis and Euseius gallicus in glasshouse crops. IOBC/WPRS Bulletin, 120, 47–54.
  • Ragusa, S., & Swirski, E. (1975). Feeding habits, development and oviposition of the predacious mite Amblyseius swirskii Athias-Henriot (Acarina: Phytoseiidae) on pollen of various weeds. Israel Journal of Entomology, 10, 93–103.
  • Ramakers, P. M. J., & van Lieburg, M. J. (1988). Start of commercial production and introduction of Amblyseius mckenziei Sch. and Pr. (Acarina: Phytoseiidae) for the control of Thrips tabaci Lind. (Thysanoptera: Thripidae) in glasshouses. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 47(2), 541–545.
  • Riahi, E., Fathipour, Y., Talebi, A. A., & Mehrabadi, M. (2017). Natural diets versus factitious prey: Comparative effects on development, fecundity and life table of Amblyseius swirskii (Acari: Phytoseiidae). Systematic and Applied Acarology, 22(5), 711–724.
  • Rifà, E. V., & Griffiths, D. (2018). U.S. No. US20180160688A1. Retrieved from http://patents.google.com/patent/US20180160688A1/en
  • Sabelis, M. W. (1990). How to analyse prey preference when prey density varies? A new method to discriminate between effects of gut fullness and prey type composition. Oecologia, 82(3), 289–298.
  • Sarwar, M. (2016). Comparative life history characteristics of the mite predator Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on mite and pollen diets. International Journal of Pest Management, 62(2), 140–148.
  • Sarwar, M., Xu, X., & Wu, K. (2010). Effects of different flours on the biology of the prey Tyrophagus putrescentiae (Schrank)(Acarina: Acaridae) and the predator Neoseiulus pseudolongispinosus (Xin, Liang and Ke) (Acari: Phytoseiidae). International Journal of Acarology, 36(5), 363–369.
  • Simoni, S., Nannelli, R., Goggioli, D., Guidi, S., & Castagnoli, M. (2006). Biological and demographic parameters of Neoseiulus californicus (McGregors) (Acari Phytoseiidae) reared on two astigmatid mites. Redia, 89, 59–63.
  • Sloggett, J. J., & Lorenz, M. W. (2008). Egg composition and reproductive investment in aphidophagous ladybird beetles (Coccinellidae: Coccinellini): egg development and interspecific variation. Physiological Entomology, 33(3), 200–208.
  • Swirski, E. (1967). Laboratory studies on the feeding, development and reproduction of the predaceous mites Amblyseius rubini Swirski and Amitai and Amblyseius swirskii Athias (Acarina: Phytoseiidae) on various kinds of food substances. Israel Journal of Agricultural Resources, 17, 101–119.
  • Teulon, D. A. J., & Penman, D. R. (1991). Effects of temperature and diet on oviposition rate and development time of the New Zealand flower thrips, Thrips obscuratus. Entomologia Experimentalis et Applicata, 60(2), 143–155.
  • Vangansbeke, D., Nguyen, D. T., Audenaert, J., Gobin, B., Tirry, L., & de Clercq, P. (2016). Establishment of Amblyseius swirskii in greenhouse crops using food supplements. Systematic and Applied Acarology, 21(9), 1174–1185.
  • Vangansbeke, D., Nguyen, D. T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L., & de Clercq, P. (2014). Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl, 59(1), 67–77.
  • Vangansbeke, D., Nguyen, D. T., Audenaert, J., Verhoeven, R., Gobin, B., Tirry, L., & de Clercq, P. (2016). Supplemental food for Amblyseius swirskii in the control of thrips: Feeding friend or foe? Pest Management Science, 72(3), 466–473.
  • van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2018). Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl, 63(1), 39–59.
  • van Maanen, R., Vila, E., Sabelis, M. W., & Janssen, A. (2010). Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Experimental and Applied Acarology, 52(1), 29–34.
  • van Rijn, P. C., & Tanigoshi, L. K. (1999). Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experimental & Applied Acarology, 23(10), 785–802.