146
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Species-specific multiplex PCR for the rapid diagnosis of egg parasitoids of light brown apple moth, Epiphyas postvittana, in northern California

, &
Pages 548-558 | Received 18 Oct 2019, Accepted 12 Mar 2020, Published online: 28 Mar 2020

References

  • Bailey, P. T., Ferguson, K. L., McMahon, R., & Wicks, T. J. (1997). Transmission of Botrytis cinerea by lightbrown apple moth larvae on grapes. Australian Journal of Grape and Wine Research, 3(2), 90–94. https://doi.org/10.1111/j.1755-0238.1997.tb00120.x
  • Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2007). Genbank. Nucleic Acids Research, 36(Database), D25–D30. https://doi.org/10.1093/nar/gkm929
  • Brockerhoff, E. G., Suckling, D. M., Ecroyd, C. E., Wagstaff, S. J., Raabe, M. C., Dowell, R. V., & Wearing, C. H. (2011). Worldwide host plants of the highly polyphagous, invasive Epiphyas postvittana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 104(5), 1514–1524. https://doi.org/10.1603/EC11160
  • Brown, J. W., Epstein, M. E., Gilligan, T. M., Passoa, S. C., & Powell, J. A. (2010). Biology, identification, and history of the light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae: Archipini) in California: An example of the importance of local faunal surveys to document the establishment of exotic insects. American Entomologist, 56(1), 34–43. https://doi.org/10.1093/ae/56.1.34
  • Danthanarayana, W. (1975). Bionomics, distribution and host range of light brown apple moth, Epiphyas postvittana (Walker) (Tortricidae). Australian Journal of Zoology, 23(3), 419–437. https://doi.org/10.1071/ZO9750419
  • Gariepy, T. D., Kuhlmann, U., Gillott, C., & Erlandson, M. (2007). Parasitoids, predators and PCR: The use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology, 131(4), 225–240. https://doi.org/10.1111/j.1439-0418.2007.01145.x
  • Gariepy, T. D., Kuhlmann, U., Haye, T., Gillott, C., & Erlandson, M. (2005). A single-step multiplex PCR assay for the detection of European Peristenus spp., parasitoids of Lygus spp. Biocontrol Science and Technology, 15(5), 481–495. https://doi.org/10.1080/09583150500086771
  • Glenn, D. C., Hercus, M. J., & Hoffmann, A. A. (1997). Characterizing Trichogramma (Hymenopter: Trichogrammatidae) species for biocontrol of light brown apple moth (Lepidoptera: Tortricidae) in grapevines in Australia. Annals of the Entomological Society of America, 90(2), 128–137. https://doi.org/10.1093/aesa/90.2.128
  • Hall, T. A. (1999). Bioedit: A user-friendly biological sequence alignment [ed.], and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  • Hartley, J. L., & Rashtchian, A. (1993). Dealing with contamination: Enzymatic control of carryover contamination in PCR. Genome Research, 3(2), S10–S14. https://doi.org/10.1101/gr.3.2.S10
  • Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218
  • Johnson, M. W., Pickel, C., Strand, L. L., Varela, L. G., Wilen, C. A., Bolda, M. P., Flint, M. L., Lam, W. K. F., & Zalom, F. G. (2007). Light brown apple moth in California: Quarantine, management, and potential impacts. University of California Agriculture and Natural Resources, UC Statewide Integrated Pest Management Program. Retrieved September 30, 2019, from https://ucanr.edu/sites/uccesc/files/51586.pdf
  • Li, L. (1994). Worldwide use of Trichogramma for biological control on different crops: A survey. In E. Wajnberg & S. A. Hassan (Eds.), Biological control with egg parasitoids (pp. 37–54). CAB International.
  • McDougall, S. J., & Mills, N. J. (1997). The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomologia Experimentalis et Applicata, 83(2), 195–203. https://doi.org/10.1046/j.1570-7458.1997.00172.x
  • Pinto, J. D. (1999). Systematics of the North American species of Trichogramma Westwood [Monograph]. Memoirs of the Entomological Society of Washington, 22, 1–387.
  • Pinto, J. D., Koopmanschap, A. B., Platner, G. R., & Stouthamer, R. (2002). The North American Trichogramma (Hymenoptera: Trichogrammatoidae) parasitizing certain Tortricidae (Lipidotera) on apple and pear with ITS-2 DNA characterization and redescription of new species. Biological Control, 23(2), 134–142. https://doi.org/10.1006/bcon.2001.0995
  • Polaszek, A., Rugman-Jones, P. F., Stouthamer, R., Hernandez-Suarez, E., Cabello, T., & del Pino Pérez, M. (2012). Molecular and morphological diagnoses of five species of Trichogramma: Biological control agents of Chrysodeixis chalcites (Lepidoptera: Noctuidae) and Tuta absoluta (Lepidoptera: Gelechiidae) in the Canary Islands. BioControl, 57(1), 21–35. https://doi.org/10.1007/s10526-011-9361-y
  • Rogers, D. J., Walker, J. T. S., Moen, I. C., Weibel, F., Lo, P. L., & Cole, L. M. (2003). Understorey influence on leafroller populations in Hawke’s Bay organic apple orchards. New Zealand Plant Protection, 56, 168–173. https://doi.org/10.30843/nzpp.2003.56.6037
  • Rozen, S., & Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In S. Krawetz & S. Misener (Eds.), Bioinformatics methods and protocols: Methods in molecular biology (pp. 365–386). Humana Press.
  • Rugman-Jones, P. F., & Stouthamer, R. (2017). High-resolution melt analysis without DNA extraction affords rapid genotype resolution and species identification. Molecular Ecology Resources, 17(4), 598–607. https://doi.org/10.1111/1755-0998.12599
  • Stouthamer, R., Hu, J., Van Kan, F. J. P. M., Platner, G. R., & Pinto, J. D. (1999). The utility of internally transcribed spacer 2 DNA sequences of the nuclear ribosomal gene for distinguishing sibling species of Trichogramma. BioControl, 43(4), 421–440. https://doi.org/10.1023/A:1009937108715
  • Suckling, D. M., & Brockerhoff, E. G. (2010). Invasion biology, ecology, and management of the light brown apple moth (Tortricidae). Annual Review of Entomology, 55(1), 285–306. https://doi.org/10.1146/annurev-ento-112408-085311
  • Thomson, L., Bennett, D., Glenn, D., & Hoffmann, A. (2003). Developing Trichogramma as a pest management tool. In O. Koul, & G. S. Dhaliwal (Eds.), Predators and parasitoids (pp. 65–85). CRC Press.
  • USDA-APHIS. (2016). California distribution map, May 2016. Retrieved September 30, 2019, from https://www.aphis.usda.gov/plant_health/plant_pest_info/lba_moth/downloads/maps/5-31-2016.pdf
  • Van Lenteren, J. C., & Bueno, V. H. P. (2003). Augmentative biological control of arthropods in Latin America. BioControl, 48(2), 123–139. https://doi.org/10.1023/A:1022645210394
  • Varela, L. G., Johnson, M. W., Strand, L., Wilen, C. A., & Pickel, C. (2008). Light brown apple moth’s arrival in California worries commodity groups. California Agriculture, 62(2), 57–61. https://doi.org/10.3733/ca.v062n02p57
  • Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10, 506–513.
  • Wang, X.-G., Levy, K., Mills, N. J., & Daane, K. M. (2012). Light brown apple moth in California: A diversity of host plants and indigenous parasitoids. Environmental Entomology, 41(1), 81–90. https://doi.org/10.1603/EN11160
  • Wang, X., Chen, T., Kim, D., & Piomelli, S. (1992). Prevention of carryover contamination in the detection of beta S and beta C genes by polymerase chain reaction. American Journal of Hematology, 40(2), 146–148. https://doi.org/10.1002/ajh.2830400212
  • Wearing, C. H., Thomas, W. P., Dugdale, J. S., & Danthanarayana, W. (1991). Tortricid pests of pome and stonefruits, Australian and New Zealand species. In L. P. S. van der Geest & H. H. Evenhuis (Eds.), Tortricid pests: Their biology, natural enemies, and control (pp. 453–472). World Crop Pests, Vol. 5, Elsevier.
  • Wong, W. H., Tay, Y. C., Puniamoorthy, J., Balke, M., Cranston, P. S., & Meier, R. (2014). ‘Direct PCR’ optimization yields a rapid, cost effective, nondestructive and efficient method for obtaining DNA barcodes without DNA extraction. Molecular Ecology Resources, 14(6), 1271–1280. https://doi.org/10.1111/1755-0998.12275

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.